These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 27250184)

  • 81. The effect of air flow and medial adductory compression on vocal efficiency and glottal vibration.
    Berke GS; Hanson DG; Gerratt BR; Trapp TK; Macagba C; Natividad M
    Otolaryngol Head Neck Surg; 1990 Mar; 102(3):212-8. PubMed ID: 2108407
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Vocal tract resonances in singing: variation with laryngeal mechanism for male operatic singers in chest and falsetto registers.
    Henrich Bernardoni N; Smith J; Wolfe J
    J Acoust Soc Am; 2014 Jan; 135(1):491-501. PubMed ID: 24437789
    [TBL] [Abstract][Full Text] [Related]  

  • 83. The impact of phonation mode and vocal technique on vocal fold closure in young females with normal voice quality.
    De Bodt MS; Clement G; Wuyts FL; Borghs C; Van Lierde KM
    J Voice; 2012 Nov; 26(6):818.e1-4. PubMed ID: 23177749
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Acoustic and EGG analyses of emotional utterances.
    Waaramaa T; Kankare E
    Logoped Phoniatr Vocol; 2013 Apr; 38(1):11-8. PubMed ID: 22587654
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Vocal tract resonances and the sound of the Australian didjeridu (yidaki). III. Determinants of playing quality.
    Smith J; Rey G; Dickens P; Fletcher N; Hollenberg L; Wolfe J
    J Acoust Soc Am; 2007 Jan; 121(1):547-58. PubMed ID: 17297808
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Normative standards for vocal tract dimensions by race as measured by acoustic pharyngometry.
    Xue SA; Hao JG
    J Voice; 2006 Sep; 20(3):391-400. PubMed ID: 16243483
    [TBL] [Abstract][Full Text] [Related]  

  • 87. A photoglottographical study of the female vocal folds during phonation.
    Kitzing P; Sonesson B
    Folia Phoniatr (Basel); 1974; 26(2):138-49. PubMed ID: 4845620
    [No Abstract]   [Full Text] [Related]  

  • 88. Vocal tract resonances and the sound of the Australian didjeridu (yidaki) II. Theory.
    Fletcher NH; Hollenberg LC; Smith J; Tarnopolsky AZ; Wolfe J
    J Acoust Soc Am; 2006 Feb; 119(2):1205-13. PubMed ID: 16521781
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Vocal tract shape and acoustic adjustments of children during phonation into narrow flow-resistant tubes.
    Patel RR; Lulich SM; Verdi A
    J Acoust Soc Am; 2019 Jul; 146(1):352. PubMed ID: 31370566
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Modeling source-filter interaction in belting and high-pitched operatic male singing.
    Titze IR; Worley AS
    J Acoust Soc Am; 2009 Sep; 126(3):1530. PubMed ID: 19739766
    [TBL] [Abstract][Full Text] [Related]  

  • 91. The mechanisms of harmonic sound generation during phonation: A multi-modal measurement-based approach.
    Lodermeyer A; Bagheri E; Kniesburges S; Näger C; Probst J; Döllinger M; Becker S
    J Acoust Soc Am; 2021 Nov; 150(5):3485. PubMed ID: 34852620
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Effect of Supraglottal Acoustics on Fluid-Structure Interaction During Human Voice Production.
    Bodaghi D; Jiang W; Xue Q; Zheng X
    J Biomech Eng; 2021 Apr; 143(4):. PubMed ID: 33399816
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Investigation of resonance strategies of high pitch singing sopranos using dynamic three-dimensional magnetic resonance imaging.
    Köberlein M; Birkholz P; Burdumy M; Richter B; Burk F; Traser L; Echternach M
    J Acoust Soc Am; 2021 Dec; 150(6):4191. PubMed ID: 34972262
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Changes in the human vocal tract due to aging and the acoustic correlates of speech production: a pilot study.
    Xue SA; Hao GJ
    J Speech Lang Hear Res; 2003 Jun; 46(3):689-701. PubMed ID: 14696995
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Some Consensus has been Reached on the Labeling of Harmonics, Formants, and Resonances.
    Titze IR
    J Voice; 2016 Mar; 30(2):129. PubMed ID: 26596843
    [No Abstract]   [Full Text] [Related]  

  • 96. A comparison of vocal tract perturbation patterns based on statistical and acoustic considerations.
    Story BH
    J Acoust Soc Am; 2007 Oct; 122(4):EL107-14. PubMed ID: 17902738
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Sound generation by steady flow through glottis-shaped orifices.
    Zhang Z; Mongeau L; Frankel SH; Thomson S; Park JB
    J Acoust Soc Am; 2004 Sep; 116(3):1720-8. PubMed ID: 15478439
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Analysis of the tonal sound generation during phonation with and without glottis closure.
    Kniesburges S; Lodermeyer A; Semmler M; Schulz YK; Schützenberger A; Becker S
    J Acoust Soc Am; 2020 May; 147(5):3285. PubMed ID: 32486803
    [TBL] [Abstract][Full Text] [Related]  

  • 99. On the role of glottis-interior sources in the production of voiced sound.
    Howe MS; McGowan RS
    J Acoust Soc Am; 2012 Feb; 131(2):1391-400. PubMed ID: 22352512
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Voice efficiency for different voice qualities combining experimentally derived sound signals and numerical modeling of the vocal tract.
    Fleischer M; Rummel S; Stritt F; Fischer J; Bock M; Echternach M; Richter B; Traser L
    Front Physiol; 2022; 13():1081622. PubMed ID: 36620215
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.