BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 27250343)

  • 1. Energy transfer from an individual silica nanoparticle to graphene quantum dots and resulting enhancement of photodetector responsivity.
    Kim S; Shin DH; Kim J; Jang CW; Kang SS; Kim JM; Kim JH; Lee DH; Kim JH; Choi SH; Hwang SW
    Sci Rep; 2016 Jun; 6():27145. PubMed ID: 27250343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the Förster Resonance Energy Transfer Dynamics in Colloidal Donor-Acceptor Quantum Dots Assemblies.
    Khalid MA; Mubeen M; Mukhtar M; Siddique Z; Sumreen P; Aydın F; Asil D; Iqbal A
    J Fluoresc; 2023 Nov; 33(6):2523-2529. PubMed ID: 37314535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly sensitive detection of acid phosphatase by using a graphene quantum dots-based förster resonance energy transfer.
    Na W; Liu Q; Sui B; Hu T; Su X
    Talanta; 2016 Dec; 161():469-475. PubMed ID: 27769433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative Understanding of Charge-Transfer-Mediated Fe
    Das R; Sugimoto H; Fujii M; Giri PK
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4755-4768. PubMed ID: 31914727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fluorescence resonance energy transfer (FRET) biosensor based on graphene quantum dots (GQDs) and gold nanoparticles (AuNPs) for the detection of mecA gene sequence of Staphylococcus aureus.
    Shi J; Chan C; Pang Y; Ye W; Tian F; Lyu J; Zhang Y; Yang M
    Biosens Bioelectron; 2015 May; 67():595-600. PubMed ID: 25288044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Niche nanoparticle-based FRET assay for bleomycin detection via DNA scission.
    Pei H; Zheng Y; Kong R; Xia L; Qu F
    Biosens Bioelectron; 2016 Nov; 85():76-82. PubMed ID: 27155119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoparticle based fluorescence resonance energy transfer (FRET) for biosensing applications.
    Shi J; Tian F; Lyu J; Yang M
    J Mater Chem B; 2015 Sep; 3(35):6989-7005. PubMed ID: 32262700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced photoluminescence of silicon quantum dots in the presence of both energy transfer enhancement and emission enhancement mechanisms assisted by the double plasmon modes of gold nanorods.
    Cao J; Zhang H; Pi X; Li D; Yang D
    Nanoscale Adv; 2021 Aug; 3(16):4810-4815. PubMed ID: 36134309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence resonance energy transfer quenching at the surface of graphene quantum dots for ultrasensitive detection of TNT.
    Fan L; Hu Y; Wang X; Zhang L; Li F; Han D; Li Z; Zhang Q; Wang Z; Niu L
    Talanta; 2012 Nov; 101():192-7. PubMed ID: 23158311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Heterostructured Graphene Quantum Dots/β-Ga
    Zeng G; Li XX; Li YC; Chen DB; Chen YC; Zhao XF; Chen N; Wang TY; Zhang DW; Lu HL
    ACS Appl Mater Interfaces; 2022 Apr; 14(14):16846-16855. PubMed ID: 35363489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of a dual functional blocking layer for improvement of the responsivity in a self-powered UV photodetector based on TiO
    Zare A; Behaein S; Moradi M; Hosseini Z
    RSC Adv; 2022 Mar; 12(16):9909-9916. PubMed ID: 35424944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental and theoretical investigation of the distance dependence of localized surface plasmon coupled Förster resonance energy transfer.
    Zhang X; Marocico CA; Lunz M; Gerard VA; Gun'ko YK; Lesnyak V; Gaponik N; Susha AS; Rogach AL; Bradley AL
    ACS Nano; 2014 Feb; 8(2):1273-83. PubMed ID: 24490807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lanthanide-to-quantum dot Förster resonance energy transfer (FRET): Application for immunoassay.
    Goryacheva OA; Beloglazova NV; Vostrikova AM; Pozharov MV; Sobolev AM; Goryacheva IY
    Talanta; 2017 Mar; 164():377-385. PubMed ID: 28107944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Enhanced Photoresponsivity of a Monolayer WSe
    Nguyen DA; Oh HM; Duong NT; Bang S; Yoon SJ; Jeong MS
    ACS Appl Mater Interfaces; 2018 Mar; 10(12):10322-10329. PubMed ID: 29508611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of photobleaching in single-molecule multicolor excitation and Förster resonance energy transfer measurements.
    Eggeling C; Widengren J; Brand L; Schaffer J; Felekyan S; Seidel CA
    J Phys Chem A; 2006 Mar; 110(9):2979-95. PubMed ID: 16509620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum dots as simultaneous acceptors and donors in time-gated Förster resonance energy transfer relays: characterization and biosensing.
    Algar WR; Wegner D; Huston AL; Blanco-Canosa JB; Stewart MH; Armstrong A; Dawson PE; Hildebrandt N; Medintz IL
    J Am Chem Soc; 2012 Jan; 134(3):1876-91. PubMed ID: 22220737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Promising Fast Energy Transfer System Between Graphene Quantum Dots and the Application in Fluorescent Bioimaging.
    Wang G; He P; Xu A; Guo Q; Li J; Wang Z; Liu Z; Chen D; Yang S; Ding G
    Langmuir; 2019 Jan; 35(3):760-766. PubMed ID: 30485105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A graphene quantum dot-based FRET system for nuclear-targeted and real-time monitoring of drug delivery.
    Chen H; Wang Z; Zong S; Chen P; Zhu D; Wu L; Cui Y
    Nanoscale; 2015 Oct; 7(37):15477-86. PubMed ID: 26346491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-performance Förster resonance energy transfer (FRET)-based dye-sensitized solar cells: rational design of quantum dots for wide solar-spectrum utilization.
    Lee E; Kim C; Jang J
    Chemistry; 2013 Jul; 19(31):10280-6. PubMed ID: 23765414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoresponse of polyaniline-functionalized graphene quantum dots.
    Lai SK; Luk CM; Tang L; Teng KS; Lau SP
    Nanoscale; 2015 Mar; 7(12):5338-43. PubMed ID: 25721572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.