These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 27250343)

  • 41. Hybrid Device Architecture Using Plasmonic Nanoparticles, Graphene Quantum Dots, and Titanium Dioxide for UV Photodetectors.
    Kunwar S; Pandit S; Kulkarni R; Mandavkar R; Lin S; Li MY; Lee J
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):3408-3418. PubMed ID: 33399456
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots.
    Zhu Z; Ma J; Wang Z; Mu C; Fan Z; Du L; Bai Y; Fan L; Yan H; Phillips DL; Yang S
    J Am Chem Soc; 2014 Mar; 136(10):3760-3. PubMed ID: 24558950
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Aptamer/Graphene Quantum Dots Nanocomposite Capped Fluorescent Mesoporous Silica Nanoparticles for Intracellular Drug Delivery and Real-Time Monitoring of Drug Release.
    Zheng FF; Zhang PH; Xi Y; Chen JJ; Li LL; Zhu JJ
    Anal Chem; 2015 Dec; 87(23):11739-45. PubMed ID: 26524192
    [TBL] [Abstract][Full Text] [Related]  

  • 44. FRET from quantum dots to photodecompose undesired acceptors and report the condensation and decondensation of plasmid DNA.
    Biju V; Anas A; Akita H; Shibu ES; Itoh T; Harashima H; Ishikawa M
    ACS Nano; 2012 May; 6(5):3776-88. PubMed ID: 22468986
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Self-assembled donor comprising quantum dots and fluorescent proteins for long-range fluorescence resonance energy transfer.
    Lu H; Schöps O; Woggon U; Niemeyer CM
    J Am Chem Soc; 2008 Apr; 130(14):4815-27. PubMed ID: 18338889
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of Lateral Size of Graphene Quantum Dots on Their Properties and Application.
    Zhang F; Liu F; Wang C; Xin X; Liu J; Guo S; Zhang J
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2104-10. PubMed ID: 26725374
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bridging Lanthanide to Quantum Dot Energy Transfer with a Short-Lifetime Organic Dye.
    Díaz SA; Lasarte Aragonés G; Buckhout-White S; Qiu X; Oh E; Susumu K; Melinger JS; Huston AL; Hildebrandt N; Medintz IL
    J Phys Chem Lett; 2017 May; 8(10):2182-2188. PubMed ID: 28467088
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Crossover between Anti- and Pro-oxidant Activities of Graphene Quantum Dots in the Absence or Presence of Light.
    Chong Y; Ge C; Fang G; Tian X; Ma X; Wen T; Wamer WG; Chen C; Chai Z; Yin JJ
    ACS Nano; 2016 Sep; 10(9):8690-9. PubMed ID: 27584033
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Donor-acceptor systems: energy transfer from CdS quantum dots/rods to Nile Red dye.
    Sadhu S; Patra A
    Chemphyschem; 2008 Oct; 9(14):2052-8. PubMed ID: 18756556
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nanotubular J-aggregates and quantum dots coupled for efficient resonance excitation energy transfer.
    Qiao Y; Polzer F; Kirmse H; Steeg E; Kühn S; Friede S; Kirstein S; Rabe JP
    ACS Nano; 2015 Feb; 9(2):1552-60. PubMed ID: 25555126
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Quantum dot-based multidonor concentric FRET system and its application to biosensing using an excitation ratio.
    Kim H; Ng CY; Algar WR
    Langmuir; 2014 May; 30(19):5676-85. PubMed ID: 24810095
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Electrochemiluminescence resonance energy transfer between graphene quantum dots and gold nanoparticles for DNA damage detection.
    Lu Q; Wei W; Zhou Z; Zhou Z; Zhang Y; Liu S
    Analyst; 2014 May; 139(10):2404-10. PubMed ID: 24686461
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Facile synthesis and photoluminescence characteristics of blue-emitting nitrogen-doped graphene quantum dots.
    Gu J; Zhang X; Pang A; Yang J
    Nanotechnology; 2016 Apr; 27(16):165704. PubMed ID: 26964866
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A potential carcinogenic pyrene derivative under Förster resonance energy transfer to various energy acceptors in nanoscopic environments.
    Banerjee S; Goswami N; Pal SK
    Chemphyschem; 2013 Oct; 14(15):3581-93. PubMed ID: 24038989
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors.
    Clapp AR; Medintz IL; Mauro JM; Fisher BR; Bawendi MG; Mattoussi H
    J Am Chem Soc; 2004 Jan; 126(1):301-10. PubMed ID: 14709096
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electrochemiluminescence resonance energy transfer between graphene quantum dots and graphene oxide for sensitive protein kinase activity and inhibitor sensing.
    Liang RP; Qiu WB; Zhao HF; Xiang CY; Qiu JD
    Anal Chim Acta; 2016 Jan; 904():58-64. PubMed ID: 26724763
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Optofluidic FRET lasers using aqueous quantum dots as donors.
    Chen Q; Kiraz A; Fan X
    Lab Chip; 2016 Jan; 16(2):353-9. PubMed ID: 26659274
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Impact of a charged neighboring particle on Förster resonance energy transfer (FRET).
    Abeywickrama C; Premaratne M; Gunapala SD; Andrews DL
    J Phys Condens Matter; 2020 Feb; 32(9):095305. PubMed ID: 31722329
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High-performance graphene-quantum-dot photodetectors.
    Kim CO; Hwang SW; Kim S; Shin DH; Kang SS; Kim JM; Jang CW; Kim JH; Lee KW; Choi SH; Hwang E
    Sci Rep; 2014 Jul; 4():5603. PubMed ID: 24998800
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Förster Resonance Energy Transfer and the Local Optical Density of States in Plasmonic Nanogaps.
    Hamza AO; Viscomi FN; Bouillard JG; Adawi AM
    J Phys Chem Lett; 2021 Feb; 12(5):1507-1513. PubMed ID: 33534597
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.