These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 27250439)

  • 1. Broadband, large-area microwave antenna for optically detected magnetic resonance of nitrogen-vacancy centers in diamond.
    Sasaki K; Monnai Y; Saijo S; Fujita R; Watanabe H; Ishi-Hayase J; Itoh KM; Abe E
    Rev Sci Instrum; 2016 May; 87(5):053904. PubMed ID: 27250439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimized Planar Microwave Antenna for Nitrogen Vacancy Center Based Sensing Applications.
    Opaluch OR; Oshnik N; Nelz R; Neu E
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultra-broadband coplanar waveguide for optically detected magnetic resonance of nitrogen-vacancy centers in diamond.
    Jia W; Shi Z; Qin X; Rong X; Du J
    Rev Sci Instrum; 2018 Jun; 89(6):064705. PubMed ID: 29960527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variable bandwidth, high efficiency microwave resonator for control of spin-qubits in nitrogen-vacancy centers.
    Savitsky A; Zhang J; Suter D
    Rev Sci Instrum; 2023 Feb; 94(2):023101. PubMed ID: 36859032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optically detected magnetic resonance of high-density ensemble of NV
    Matsuzaki Y; Morishita H; Shimooka T; Tashima T; Kakuyanagi K; Semba K; Munro WJ; Yamaguchi H; Mizuochi N; Saito S
    J Phys Condens Matter; 2016 Jul; 28(27):275302. PubMed ID: 27214571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calibration-Free Vector Magnetometry Using Nitrogen-Vacancy Center in Diamond Integrated with Optical Vortex Beam.
    Chen B; Hou X; Ge F; Zhang X; Ji Y; Li H; Qian P; Wang Y; Xu N; Du J
    Nano Lett; 2020 Nov; 20(11):8267-8272. PubMed ID: 33135901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fiber-optic vectorial magnetic-field gradiometry by a spatiotemporal differential optical detection of magnetic resonance in nitrogen-vacancy centers in diamond.
    Blakley SM; Fedotov IV; Amitonova LV; Serebryannikov EE; Perez H; Kilin SY; Zheltikov AM
    Opt Lett; 2016 May; 41(9):2057-60. PubMed ID: 27128073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spin-manipulated nanoscopy for single nitrogen-vacancy center localizations in nanodiamonds.
    Barbiero M; Castelletto S; Gan X; Gu M
    Light Sci Appl; 2017 Nov; 6(11):e17085. PubMed ID: 30167213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescent Nanodiamond: A Versatile Tool for Long-Term Cell Tracking, Super-Resolution Imaging, and Nanoscale Temperature Sensing.
    Hsiao WW; Hui YY; Tsai PC; Chang HC
    Acc Chem Res; 2016 Mar; 49(3):400-7. PubMed ID: 26882283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Room-temperature magnetic gradiometry with fiber-coupled nitrogen-vacancy centers in diamond.
    Blakley SM; Fedotov IV; Kilin SY; Zheltikov AM
    Opt Lett; 2015 Aug; 40(16):3727-30. PubMed ID: 26274645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient, uniform, and large area microwave magnetic coupling to NV centers in diamond using double split-ring resonators.
    Bayat K; Choy J; Baroughi MF; Meesala S; Loncar M
    Nano Lett; 2014 Mar; 14(3):1208-13. PubMed ID: 24571706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Broadband loop gap resonator for nitrogen vacancy centers in diamond.
    Eisenach ER; Barry JF; Pham LM; Rojas RG; Englund DR; Braje DA
    Rev Sci Instrum; 2018 Sep; 89(9):094705. PubMed ID: 30278724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parallel optically detected magnetic resonance spectrometer for dozens of single nitrogen-vacancy centers using laser-spot lattice.
    Cai M; Guo Z; Shi F; Li C; Wang M; Ji W; Wang P; Du J
    Rev Sci Instrum; 2021 Apr; 92(4):045107. PubMed ID: 34243467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Circularly polarized microwave antenna for nitrogen vacancy centers in diamond.
    Yaroshenko V; Soshenko V; Vorobyov V; Bolshedvorskii S; Nenasheva E; Kotel'nikov I; Akimov A; Kapitanova P
    Rev Sci Instrum; 2020 Mar; 91(3):035003. PubMed ID: 32259924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optically Detected Magnetic Resonance for Selective Imaging of Diamond Nanoparticles.
    Robinson ME; Ng JD; Zhang H; Buchman JT; Shenderova OA; Haynes CL; Ma Z; Goldsmith RH; Hamers RJ
    Anal Chem; 2018 Jan; 90(1):769-776. PubMed ID: 29131578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. System for the remote control and imaging of MW fields for spin manipulation in NV centers in diamond.
    Mariani G; Nomoto S; Kashiwaya S; Nomura S
    Sci Rep; 2020 Mar; 10(1):4813. PubMed ID: 32179784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excited-State Optically Detected Magnetic Resonance of Spin Defects in Hexagonal Boron Nitride.
    Mu Z; Cai H; Chen D; Kenny J; Jiang Z; Ru S; Lyu X; Koh TS; Liu X; Aharonovich I; Gao W
    Phys Rev Lett; 2022 May; 128(21):216402. PubMed ID: 35687466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of the Three-Dimensional Magnetic Field Vector Orientation with Nitrogen Vacany Centers in Diamond.
    Weggler T; Ganslmayer C; Frank F; Eilert T; Jelezko F; Michaelis J
    Nano Lett; 2020 May; 20(5):2980-2985. PubMed ID: 32182080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of a High-Bandwidth Uniform Radiation Antenna for Wide-Field Imaging with Ensemble NV Color Centers in Diamond.
    Li Z; Li Z; Shi Z; Zhang H; Liang Y; Tang J
    Micromachines (Basel); 2022 Jun; 13(7):. PubMed ID: 35888824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sub-second temporal magnetic field microscopy using quantum defects in diamond.
    Parashar M; Bathla A; Shishir D; Gokhale A; Bandyopadhyay S; Saha K
    Sci Rep; 2022 May; 12(1):8743. PubMed ID: 35610314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.