These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 27250458)

  • 21. Wide-band acousto-optic deflectors for large field of view two-photon microscope.
    Jiang R; Zhou Z; Lv X; Zeng S
    Rev Sci Instrum; 2012 Apr; 83(4):043709. PubMed ID: 22559541
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Collinear diffraction of divergent optical beams in acousto-optic crystals.
    Balakshy VI; Mantsevich SN
    Appl Opt; 2009 Mar; 48(7):C135-40. PubMed ID: 19252606
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Acousto-optical interaction of surface acoustic and optical waves in a two-dimensional phoxonic crystal hetero-structure cavity.
    Ma TX; Zou K; Wang YS; Zhang C; Su XX
    Opt Express; 2014 Nov; 22(23):28443-51. PubMed ID: 25402086
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrasound-mediated biophotonic imaging: a review of acousto-optical tomography and photo-acoustic tomography.
    Wang LV
    Dis Markers; 2003-2004; 19(2-3):123-38. PubMed ID: 15096709
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acousto-optic image processing.
    Balakshy VI; Kostyuk DE
    Appl Opt; 2009 Mar; 48(7):C24-32. PubMed ID: 19252612
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Acousto-optic interaction in nanodimensional laser heterostructures.
    Kulakova LA
    Appl Opt; 2009 Feb; 48(6):1128-34. PubMed ID: 23567573
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Acousto-optic interaction with the use of cylindrical ultrasonic waves in the laser cavity.
    Grulkowski I; Jankowski D; Kwiek P
    Appl Opt; 2009 Mar; 48(7):C81-5. PubMed ID: 19252620
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Relationship between acoustic power and acoustic radiation force on absorbing and reflecting targets for spherically focusing radiators.
    Gélat P; Shaw A
    Ultrasound Med Biol; 2015 Mar; 41(3):832-44. PubMed ID: 25683223
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Acousto-optic interaction with leaky surface acoustic waves in Y-cut LiTaO3 crystals.
    Belovickis J; Rimeika R; Ciplys D
    Ultrasonics; 2012 Jul; 52(5):593-7. PubMed ID: 22222180
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Breakdown of the linear acousto-optic interaction regime in phoxonic cavities.
    Almpanis E; Papanikolaou N; Stefanou N
    Opt Express; 2014 Dec; 22(26):31595-607. PubMed ID: 25607131
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficient optical enhancement of acousto-optic diffraction using optimized overlap of coupled waves.
    Vachss F; McMichael I
    Opt Lett; 1990 Aug; 15(16):921-3. PubMed ID: 19770954
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative measurement of acoustic pressure in the focal zone of acoustic lens-line focusing using the Schlieren method.
    Jiang X; Cheng Q; Xu Z; Qian M; Han Q
    Appl Opt; 2016 Apr; 55(10):2478-83. PubMed ID: 27139646
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Applications of a nanocomposite-inspired in-situ broadband ultrasonic sensor to acousto-ultrasonics-based passive and active structural health monitoring.
    Liu M; Zeng Z; Xu H; Liao Y; Zhou L; Zhang Z; Su Z
    Ultrasonics; 2017 Jul; 78():166-174. PubMed ID: 28371650
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of pulsed ultrasound using optical detection in Raman-Nath regime.
    Jia L; Xue B; Chen S; Wu H; Yang X; Zhai J; Zeng Z
    Rev Sci Instrum; 2018 Aug; 89(8):084906. PubMed ID: 30184622
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Acousto-optic holography.
    Verburg SA; Williams EG; Fernandez-Grande E
    J Acoust Soc Am; 2022 Dec; 152(6):3790. PubMed ID: 36586838
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A comparison measurement of nonlinear ultrasonic waves in tubes by a microphone and by an optical interferometric probe.
    Slegrová Z; Bálek R
    Ultrasonics; 2005 Mar; 43(5):315-9. PubMed ID: 15737381
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Experimental measurement of the acousto-electric interaction signal in saline solution.
    Lavandier B; Jossinet J; Cathignol D
    Ultrasonics; 2000 Sep; 38(9):929-36. PubMed ID: 11012016
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On the eigenfunctions of acousto-optic modulation in a homogeneously absorbing optical medium.
    Paul JS; Dokos S; Duchateau P
    Opt Lett; 2009 Aug; 34(16):2528-9. PubMed ID: 19684838
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Numerical analysis for transverse microbead trapping using 30 MHz focused ultrasound in ray acoustics regime.
    Lee J
    Ultrasonics; 2014 Jan; 54(1):11-9. PubMed ID: 23809757
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Schlieren visualization of ultrasonic standing waves in mm-sized chambers for ultrasonic particle manipulation.
    Möller D; Degen N; Dual J
    J Nanobiotechnology; 2013 Jun; 11():21. PubMed ID: 23842114
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.