These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 27250464)

  • 1. A multi-probe thermophoretic soot sampling system for high-pressure diffusion flames.
    Vargas AM; Gülder ÖL
    Rev Sci Instrum; 2016 May; 87(5):055101. PubMed ID: 27250464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An automated thermophoretic soot sampling device for laboratory-scale high-pressure flames.
    Leschowski M; Dreier T; Schulz C
    Rev Sci Instrum; 2014 Apr; 85(4):045103. PubMed ID: 24784655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel electric thermophoretic sampling device with highly repeatable characteristics.
    Altenhoff M; Teige C; Storch M; Will S
    Rev Sci Instrum; 2016 Dec; 87(12):125108. PubMed ID: 28040913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation and Evolution of Soot in Ethylene Inverse Diffusion Flames in Ozone Atmosphere.
    Ying Y; Liu D
    Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous soot multi-parameter fields predictions in laminar sooting flames from neural network-based flame luminosity measurement I: methodology.
    Wang Q; Li Z; Sun Z; Liu H; Cai W; Yao M
    Opt Lett; 2021 Aug; 46(16):3869-3872. PubMed ID: 34388762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence.
    Ni T; Pinson JA; Gupta S; Santoro RJ
    Appl Opt; 1995 Oct; 34(30):7083-91. PubMed ID: 21060570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of ammonia on morphological characteristics and nanostructure of soot in the combustion of diesel surrogate fuels.
    Zhang K; Xu Y; Li Y; Liu Y; Wang B; Wang H; Ma J; Cheng X
    J Hazard Mater; 2023 Mar; 445():130645. PubMed ID: 37056027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soot Morphology and Nanostructure Differences between Chinese Aviation Kerosene and Algae-Based Aviation Biofuel in Free Jet Laminar Diffusion Flames.
    Chang D; Li J; Yang Y; Gan Z
    ACS Omega; 2022 Apr; 7(14):11560-11569. PubMed ID: 35449979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soot formation and oxidation in oscillating methane-air diffusion flames at elevated pressure.
    Hentschel J; Suntz R; Bockhorn H
    Appl Opt; 2005 Nov; 44(31):6673-81. PubMed ID: 16270556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing ultrafast dynamics of soot in situ in a laminar diffusion flame using a femtosecond near-infrared laser pump and multi-color Rayleigh scattering probe spectroscopy.
    Zhang W; Liang T; Fu Y; Chen S; Zang H; Xu H
    Opt Express; 2022 Jul; 30(15):26182-26191. PubMed ID: 36236813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of soot self-absorption on color-ratio pyrometry in laminar coflow diffusion flames.
    Kempema NJ; Long MB
    Opt Lett; 2018 Mar; 43(5):1103-1106. PubMed ID: 29489790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental and numerical research on the effects of pressure and CO
    Zhou Y; Zhang P; Wang S; Cai J; Xi J
    RSC Adv; 2024 Sep; 14(41):30260-30271. PubMed ID: 39315025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Pressure on Burning and Soot Characteristics of RP-3 Kerosene Droplets under Sub-Atmospheric Pressure.
    Huang J; He Y; Zhang H; Dai Y; Wang Z
    ACS Omega; 2023 Apr; 8(15):14053-14065. PubMed ID: 37091373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Raman spectroscopy, mobility size and radiative emissions data for soot formed at increasing temperature and equivalence ratio in flames hotter than conventional combustion applications.
    Dasappa S; Camacho J
    Data Brief; 2021 Jun; 36():107064. PubMed ID: 34026968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine learning-assisted soot temperature and volume fraction fields predictions in the ethylene laminar diffusion flames.
    Ren T; Zhou Y; Wang Q; Liu H; Li Z; Zhao C
    Opt Express; 2021 Jan; 29(2):1678-1693. PubMed ID: 33726377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soot Morphology and Nanostructure in Complex Flame Flow Patterns via Secondary Particle Surface Growth.
    Davis J; Tiwari K; Novosselov I
    Fuel (Lond); 2019 Jun; 245():447-457. PubMed ID: 31736504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of FRAME for Simultaneous LIF and LII Imaging in Sooting Flames Using a Single Camera.
    Mishra YN; Boggavarapu P; Chorey D; Zigan L; Will S; Deshmukh D; Rayavarapu R
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32992557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurements and predictions of thermophoretic soot deposition.
    Mensch AE; Cleary TG
    Int J Heat Mass Transf; 2019; 143():. PubMed ID: 32116345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pressure effect on soot formation in turbulent diffusion flames.
    Roditcheva OV; Bai XS
    Chemosphere; 2001; 42(5-7):811-21. PubMed ID: 11219707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical Investigation of Negative Temperature Coefficient Effects on Sooting Characteristics in a Laminar Co-flow Diffusion Flame.
    Wu H; Hu Z; Dong X; Zhang S; Cao Z; Lin SL
    ACS Omega; 2021 Jun; 6(23):15156-15167. PubMed ID: 34151095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.