BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

554 related articles for article (PubMed ID: 27250752)

  • 1. Molecular and genetic control of plant thermomorphogenesis.
    Quint M; Delker C; Franklin KA; Wigge PA; Halliday KJ; van Zanten M
    Nat Plants; 2016 Jan; 2():15190. PubMed ID: 27250752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brassinosteroids Dominate Hormonal Regulation of Plant Thermomorphogenesis via BZR1.
    Ibañez C; Delker C; Martinez C; Bürstenbinder K; Janitza P; Lippmann R; Ludwig W; Sun H; James GV; Klecker M; Grossjohann A; Schneeberger K; Prat S; Quint M
    Curr Biol; 2018 Jan; 28(2):303-310.e3. PubMed ID: 29337075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ambient temperature signalling in plants.
    Wigge PA
    Curr Opin Plant Biol; 2013 Oct; 16(5):661-6. PubMed ID: 24021869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Circadian clock- and PIF4-controlled plant growth: a coincidence mechanism directly integrates a hormone signaling network into the photoperiodic control of plant architectures in Arabidopsis thaliana.
    Nomoto Y; Kubozono S; Yamashino T; Nakamichi N; Mizuno T
    Plant Cell Physiol; 2012 Nov; 53(11):1950-64. PubMed ID: 23037003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic analysis of circadian clock-, light-, and growth-correlated genes reveals PHYTOCHROME-INTERACTING FACTOR5 as a modulator of auxin signaling in Arabidopsis.
    Nozue K; Harmer SL; Maloof JN
    Plant Physiol; 2011 May; 156(1):357-72. PubMed ID: 21430186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Verification at the protein level of the PIF4-mediated external coincidence model for the temperature-adaptive photoperiodic control of plant growth in Arabidopsis thaliana.
    Yamashino T; Nomoto Y; Lorrain S; Miyachi M; Ito S; Nakamichi N; Fankhauser C; Mizuno T
    Plant Signal Behav; 2013 Mar; 8(3):e23390. PubMed ID: 23299336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial regulation of thermomorphogenesis by HY5 and PIF4 in Arabidopsis.
    Lee S; Wang W; Huq E
    Nat Commun; 2021 Jun; 12(1):3656. PubMed ID: 34135347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in understanding thermomorphogenesis signaling.
    Delker C; Quint M; Wigge PA
    Curr Opin Plant Biol; 2022 Aug; 68():102231. PubMed ID: 35636376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The INO80 chromatin remodeling complex promotes thermomorphogenesis by connecting H2A.Z eviction and active transcription in Arabidopsis.
    Xue M; Zhang H; Zhao F; Zhao T; Li H; Jiang D
    Mol Plant; 2021 Nov; 14(11):1799-1813. PubMed ID: 34242850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From a repressilator-based circadian clock mechanism to an external coincidence model responsible for photoperiod and temperature control of plant architecture in Arabodopsis thaliana.
    Yamashino T
    Biosci Biotechnol Biochem; 2013; 77(1):10-6. PubMed ID: 23291766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gibberellin driven growth in elf3 mutants requires PIF4 and PIF5.
    Filo J; Wu A; Eliason E; Richardson T; Thines BC; Harmon FG
    Plant Signal Behav; 2015; 10(3):e992707. PubMed ID: 25738547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. UV-B Perceived by the UVR8 Photoreceptor Inhibits Plant Thermomorphogenesis.
    Hayes S; Sharma A; Fraser DP; Trevisan M; Cragg-Barber CK; Tavridou E; Fankhauser C; Jenkins GI; Franklin KA
    Curr Biol; 2017 Jan; 27(1):120-127. PubMed ID: 27989670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PIF4 Integrates Multiple Environmental and Hormonal Signals for Plant Growth Regulation in Arabidopsis.
    Choi H; Oh E
    Mol Cells; 2016 Aug; 39(8):587-93. PubMed ID: 27432188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A circadian clock- and PIF4-mediated double coincidence mechanism is implicated in the thermosensitive photoperiodic control of plant architectures in Arabidopsis thaliana.
    Nomoto Y; Kubozono S; Miyachi M; Yamashino T; Nakamichi N; Mizuno T
    Plant Cell Physiol; 2012 Nov; 53(11):1965-73. PubMed ID: 23037004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SPAs promote thermomorphogenesis by regulating the phyB-PIF4 module in
    Lee S; Paik I; Huq E
    Development; 2020 Oct; 147(19):. PubMed ID: 32994167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The membrane-localized protein kinase MAP4K4/TOT3 regulates thermomorphogenesis.
    Vu LD; Xu X; Zhu T; Pan L; van Zanten M; de Jong D; Wang Y; Vanremoortele T; Locke AM; van de Cotte B; De Winne N; Stes E; Russinova E; De Jaeger G; Van Damme D; Uauy C; Gevaert K; De Smet I
    Nat Commun; 2021 May; 12(1):2842. PubMed ID: 33990595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Timing to grow: roles of clock in thermomorphogenesis.
    Zhang LL; Luo A; Davis SJ; Liu JX
    Trends Plant Sci; 2021 Dec; 26(12):1248-1257. PubMed ID: 34404586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The heat response regulators HSFA1s promote
    Tan W; Chen J; Yue X; Chai S; Liu W; Li C; Yang F; Gao Y; Gutiérrez Rodríguez L; Resco de Dios V; Zhang D; Yao Y
    Sci Adv; 2023 Nov; 9(44):eadh1738. PubMed ID: 37922351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The time of day effects of warm temperature on flowering time involve PIF4 and PIF5.
    Thines BC; Youn Y; Duarte MI; Harmon FG
    J Exp Bot; 2014 Mar; 65(4):1141-51. PubMed ID: 24574484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A warm temperature-released negative feedback loop fine-tunes PIF4-mediated thermomorphogenesis in Arabidopsis.
    Li H; Xue M; Zhang H; Zhao F; Li X; Yu S; Jiang D
    Plant Commun; 2024 May; 5(5):100833. PubMed ID: 38327058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.