These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 27250911)

  • 1. Beyond cones: an improved model of whisker bending based on measured mechanics and tapering.
    Hires SA; Schuyler A; Sy J; Huang V; Wyche I; Wang X; Golomb D
    J Neurophysiol; 2016 Aug; 116(2):812-24. PubMed ID: 27250911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mechanical variables underlying object localization along the axis of the whisker.
    Pammer L; O'Connor DH; Hires SA; Clack NG; Huber D; Myers EW; Svoboda K
    J Neurosci; 2013 Apr; 33(16):6726-41. PubMed ID: 23595731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic cues for whisker-based object localization: An analytical solution to vibration during active whisker touch.
    Vaxenburg R; Wyche I; Svoboda K; Efros AL; Hires SA
    PLoS Comput Biol; 2018 Mar; 14(3):e1006032. PubMed ID: 29584719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure, function, and cortical representation of the rat submandibular whisker trident.
    Thé L; Wallace ML; Chen CH; Chorev E; Brecht M
    J Neurosci; 2013 Mar; 33(11):4815-24. PubMed ID: 23486952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of whisker geometry on contact force produced by vibrissae moving at different velocities.
    Carvell GE; Simons DJ
    J Neurophysiol; 2017 Sep; 118(3):1637-1649. PubMed ID: 28659457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variations in vibrissal geometry across the rat mystacial pad: base diameter, medulla, and taper.
    Belli HM; Yang AE; Bresee CS; Hartmann MJ
    J Neurophysiol; 2017 Apr; 117(4):1807-1820. PubMed ID: 27881718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of Choice from Competing Mechanosensory and Choice-Memory Cues during Active Tactile Decision Making.
    Campagner D; Evans MH; Chlebikova K; Colins-Rodriguez A; Loft MSE; Fox S; Pettifer D; Humphries MD; Svoboda K; Petersen RS
    J Neurosci; 2019 May; 39(20):3921-3933. PubMed ID: 30850514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unsupervised whisker tracking in unrestrained behaving animals.
    Voigts J; Sakmann B; Celikel T
    J Neurophysiol; 2008 Jul; 100(1):504-15. PubMed ID: 18463190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical models for radial distance determination by the rat vibrissal system.
    Birdwell JA; Solomon JH; Thajchayapong M; Taylor MA; Cheely M; Towal RB; Conradt J; Hartmann MJ
    J Neurophysiol; 2007 Oct; 98(4):2439-55. PubMed ID: 17553946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Whisker dynamics underlying tactile exploration.
    Hires SA; Efros AL; Svoboda K
    J Neurosci; 2013 Jun; 33(23):9576-91. PubMed ID: 23739955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The advantages of a tapered whisker.
    Williams CM; Kramer EM
    PLoS One; 2010 Jan; 5(1):e8806. PubMed ID: 20098714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulations of a Vibrissa Slipping along a Straight Edge and an Analysis of Frictional Effects during Whisking.
    Huet LA; Hartmann MJ
    IEEE Trans Haptics; 2016; 9(2):158-69. PubMed ID: 26829805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A dynamical model for generating synthetic data to quantify active tactile sensing behavior in the rat.
    Zweifel NO; Bush NE; Abraham I; Murphey TD; Hartmann MJZ
    Proc Natl Acad Sci U S A; 2021 Jul; 118(27):. PubMed ID: 34210794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tapered whiskers are required for active tactile sensation.
    Hires SA; Pammer L; Svoboda K; Golomb D
    Elife; 2013 Nov; 2():e01350. PubMed ID: 24252879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Matrix: a new tool for probing the whisker-to-barrel system with natural stimuli.
    Jacob V; Estebanez L; Le Cam J; Tiercelin JY; Parra P; Parésys G; Shulz DE
    J Neurosci Methods; 2010 May; 189(1):65-74. PubMed ID: 20362614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decoupling kinematics and mechanics reveals coding properties of trigeminal ganglion neurons in the rat vibrissal system.
    Bush NE; Schroeder CL; Hobbs JA; Yang AE; Huet LA; Solla SA; Hartmann MJ
    Elife; 2016 Jun; 5():. PubMed ID: 27348221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical coupling through the skin affects whisker movements and tactile information encoding.
    Ego-Stengel V; Abbasi A; Larroche M; Lassagne H; Boubenec Y; Shulz DE
    J Neurophysiol; 2019 Oct; 122(4):1606-1622. PubMed ID: 31411931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activity in motor-sensory projections reveals distributed coding in somatosensation.
    Petreanu L; Gutnisky DA; Huber D; Xu NL; O'Connor DH; Tian L; Looger L; Svoboda K
    Nature; 2012 Sep; 489(7415):299-303. PubMed ID: 22922646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mystacial Whisker Layout and Musculature in the Guinea Pig (Cavia porcellus): A Social, Diurnal Mammal.
    Grant RA; Delaunay MG; Haidarliu S
    Anat Rec (Hoboken); 2017 Mar; 300(3):527-536. PubMed ID: 27779826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Behavioral detection of passive whisker stimuli requires somatosensory cortex.
    Miyashita T; Feldman DE
    Cereb Cortex; 2013 Jul; 23(7):1655-62. PubMed ID: 22661403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.