These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 27250995)

  • 1. Resonant Effects in Nanoscale Bowtie Apertures.
    Ding L; Qin J; Guo S; Liu T; Kinzel E; Wang L
    Sci Rep; 2016 Jun; 6():27254. PubMed ID: 27250995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybridized plasmonic modes and Fabry-Perot effect in nanoscale bowtie aperture waveguide.
    Zhang L; Qin J; Guo S; Wang L
    Opt Express; 2019 Jun; 27(12):17221-17227. PubMed ID: 31252935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High efficiency excitation of plasmonic waveguides with vertically integrated resonant bowtie apertures.
    Kinzel EC; Xu X
    Opt Express; 2009 May; 17(10):8036-45. PubMed ID: 19434135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of three-dimensional field distribution of bowtie aperture using quasi-spherical waves and surface plasmon polaritons.
    Park C; Jung H; Hahn JW
    Sci Rep; 2017 Mar; 7():45352. PubMed ID: 28358013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional mapping of optical near field of a nanoscale bowtie antenna.
    Guo R; Kinzel EC; Li Y; Uppuluri SM; Raman A; Xu X
    Opt Express; 2010 Mar; 18(5):4961-71. PubMed ID: 20389507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of bowtie aperture antennas for producing sub-20 nm optical spots.
    Chen Y; Chen J; Xu X; Chu J
    Opt Express; 2015 Apr; 23(7):9093-9. PubMed ID: 25968743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanolithography using high transmission nanoscale bowtie apertures.
    Wang L; Uppuluri SM; Jin EX; Xu X
    Nano Lett; 2006 Mar; 6(3):361-4. PubMed ID: 16522023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanopatterning using NSOM probes integrated with high transmission nanoscale bowtie aperture.
    Murphy-DuBay N; Wang L; Kinzel EC; Uppuluri SM; Xu X
    Opt Express; 2008 Feb; 16(4):2584-9. PubMed ID: 18542340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Near- and far-field study of polarization-dependent surface plasmon resonance in bowtie nano-aperture arrays.
    Choi S; Park J; Chew SH; Khurelbaatar T; Gliserin A; Kim S; Kim DE
    Opt Express; 2023 Sep; 31(20):31760-31767. PubMed ID: 37858993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bowtie-shaped nanoaperture: a modal study.
    Ibrahim IA; Mivelle M; Grosjean T; Allegre JT; Burr GW; Baida FI
    Opt Lett; 2010 Jul; 35(14):2448-50. PubMed ID: 20634859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale ridge aperture as near-field transducer for heat-assisted magnetic recording.
    Zhou N; Kinzel EC; Xu X
    Appl Opt; 2011 Nov; 50(31):G42-6. PubMed ID: 22086046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extraordinary infrared transmission through a periodic bowtie aperture array.
    Kinzel EC; Xu X
    Opt Lett; 2010 Apr; 35(7):992-4. PubMed ID: 20364194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High transmission through ridge nano-apertures on Vertical-Cavity Surface-Emitting Lasers.
    Rao Z; Hesselink L; Harris JS
    Opt Express; 2007 Aug; 15(16):10427-38. PubMed ID: 19547395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wedge and gap plasmonic resonances in double nanoholes.
    Chen Y; Kotnala A; Yu L; Zhang J; Gordon R
    Opt Express; 2015 Nov; 23(23):30227-36. PubMed ID: 26698503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cutoff wavelength of ridge waveguide near field transducer for disk data storage.
    Peng C; Jin EX; Clinton TW; Seigler MA
    Opt Express; 2008 Sep; 16(20):16043-51. PubMed ID: 18825243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High throughput optical lithography by scanning a massive array of bowtie aperture antennas at near-field.
    Wen X; Datta A; Traverso LM; Pan L; Xu X; Moon EE
    Sci Rep; 2015 Nov; 5():16192. PubMed ID: 26525906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 40  nm thick photoresist-compatible plasmonic nanolithography using a bowtie aperture combined with a metal-insulator-metal structure.
    Jiang Z; Luo H; Guo S; Wang L
    Opt Lett; 2019 Feb; 44(4):783-786. PubMed ID: 30767986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Grating-flanked plasmonic coaxial apertures for efficient fiber optical tweezers.
    Saleh AA; Sheikhoelislami S; Gastelum S; Dionne JA
    Opt Express; 2016 Sep; 24(18):20593-603. PubMed ID: 27607663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic Resonance Enhanced Polarization-Sensitive Photodetection by Black Phosphorus in Near Infrared.
    Venuthurumilli PK; Ye PD; Xu X
    ACS Nano; 2018 May; 12(5):4861-4867. PubMed ID: 29684270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parallel optical nanolithography using nanoscale bowtie aperture array.
    Uppuluri SM; Kinzel EC; Li Y; Xu X
    Opt Express; 2010 Mar; 18(7):7369-75. PubMed ID: 20389758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.