These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 27250995)

  • 21. Numerical study of optical nanolithography using nanoscale bow-tie-shaped nano-apertures.
    Wang L; Xu X
    J Microsc; 2008 Mar; 229(Pt 3):483-9. PubMed ID: 18331499
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plane wave scattering from a plasmonic nanowire-film system with the inclusion of non-local effects.
    Trivedi R; Sharma Y; Dhawan A
    Opt Express; 2015 Oct; 23(20):26064-79. PubMed ID: 26480121
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Complementary bowtie aperture for localizing and enhancing optical magnetic field.
    Zhou N; Kinzel EC; Xu X
    Opt Lett; 2011 Aug; 36(15):2764-6. PubMed ID: 21808305
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Plasmonic Temperature-Sensing Structure Based on Dual Laterally Side-Coupled Hexagonal Cavities.
    Xie Y; Huang Y; Xu W; Zhao W; He C
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27196907
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Boosted photocatalytic efficiency through plasmonic field confinement with bowtie and diabolo nanostructures under LED irradiation.
    Lee CH; Liao SC; Lin TR; Wang SH; Lai DY; Chiu PK; Lee JW; Wu WF
    Opt Express; 2016 Aug; 24(16):17541-52. PubMed ID: 27505725
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Plasmonic-enhanced molecular fluorescence within isolated bowtie nano-apertures.
    Lu G; Li W; Zhang T; Yue S; Liu J; Hou L; Li Z; Gong Q
    ACS Nano; 2012 Feb; 6(2):1438-48. PubMed ID: 22247937
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cathodoluminescence as a probe of the optical properties of resonant apertures in a metallic film.
    Singh K; Panchenko E; Nasr B; Liu A; Wesemann L; Davis TJ; Roberts A
    Beilstein J Nanotechnol; 2018; 9():1491-1500. PubMed ID: 29977682
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhancing the light transmission of plasmonic metamaterials through polygonal aperture arrays.
    Wang J; Zhou W; Li EP
    Opt Express; 2009 Oct; 17(22):20349-54. PubMed ID: 19997263
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Raman enhancement in bowtie-shaped aperture-particle hybrid nanostructures fabricated with DNA-assisted lithography.
    Kabusure KM; Piskunen P; Yang J; Linko V; Hakala TK
    Nanoscale; 2023 May; 15(19):8589-8596. PubMed ID: 37097163
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Extraordinary transmission through a single coaxial aperture in a thin metal film.
    Banzer P; Kindler J; Quabis S; Peschel U; Leuchs G
    Opt Express; 2010 May; 18(10):10896-904. PubMed ID: 20588945
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of electron dose on positive polymethyl methacrylate resist for nanolithography of gold bowtie nanoantennas.
    Campbell C; Casey A; Triplett G
    Heliyon; 2022 May; 8(5):e09475. PubMed ID: 35663762
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Power delivery and self-heating in nanoscale near field transducer for heat-assisted magnetic recording.
    Zhou N; Traverso LM; Xu X
    Nanotechnology; 2015 Mar; 26(13):134001. PubMed ID: 25759907
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sierpiński fractal plasmonic antenna: a fractal abstraction of the plasmonic bowtie antenna.
    Sederberg S; Elezzabi AY
    Opt Express; 2011 May; 19(11):10456-61. PubMed ID: 21643300
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Theoretical Study on Symmetry-Broken Plasmonic Optical Tweezers for Heterogeneous Noble-Metal-Based Nano-Bowtie Antennas.
    Du G; Lu Y; Lankanath D; Hou X; Chen F
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33803040
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plasmonic data storage medium with metallic nano-aperture array embedded in dielectric material.
    Park S; Won Hahn J
    Opt Express; 2009 Oct; 17(22):20203-10. PubMed ID: 19997244
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Theory of resonant acoustic transmission through subwavelength apertures.
    Christensen J; Martin-Moreno L; Garcia-Vidal FJ
    Phys Rev Lett; 2008 Jul; 101(1):014301. PubMed ID: 18764114
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Localized surface plasmon mode-enhanced spectrum-tunable radiation in electrically driven plasmonic antennas.
    Liu Y; Jiang Z; Qin J; Wang L
    Opt Lett; 2020 Oct; 45(19):5506-5509. PubMed ID: 33001938
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Subdiffraction light focusing using a cross sectional ridge waveguide nanoscale aperture.
    Traverso L; Datta A; Xu X
    Opt Express; 2016 Nov; 24(23):26016-26023. PubMed ID: 27857340
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Polarization-induced tunability of localized surface plasmon resonances in arrays of sub-wavelength cruciform apertures.
    Thompson PG; Biris CG; Osley EJ; Gaathon O; Osgood RM; Panoiu NC; Warburton PA
    Opt Express; 2011 Dec; 19(25):25035-47. PubMed ID: 22273895
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transmission of light through a periodic array of slits in a thick metallic film.
    Xie Y; Zakharian A; Moloney J; Mansuripur M
    Opt Express; 2005 Jun; 13(12):4485-91. PubMed ID: 19495363
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.