These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 27251067)

  • 1. Self-Assembled 3D Flower-Like Nickel Hydroxide Nanostructures and Their Supercapacitor Applications.
    Parveen N; Cho MH
    Sci Rep; 2016 Jun; 6():27318. PubMed ID: 27251067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inside-outside OH
    Ali Ansari S; Parveen N; Al Saleh Al-Othoum M; Omaish Ansari M
    J Adv Res; 2023 Aug; 50():107-116. PubMed ID: 36280142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitrogen-doped carbon dots decorated ultrathin nickel hydroxide nanosheets for high-performance hybrid supercapacitor.
    Ji Z; Li N; Zhang Y; Xie M; Shen X; Chen L; Xu K; Zhu G
    J Colloid Interface Sci; 2019 Apr; 542():392-399. PubMed ID: 30771634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Great improvement in pseudocapacitor properties of nickel hydroxide via simple gold deposition.
    Kim SI; Thiyagarajan P; Jang JH
    Nanoscale; 2014 Oct; 6(20):11646-52. PubMed ID: 25154383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct growth of cobalt hydroxide rods on nickel foam and its application for energy storage.
    Salunkhe RR; Bastakoti BP; Hsu CT; Suzuki N; Kim JH; Dou SX; Hu CC; Yamauchi Y
    Chemistry; 2014 Mar; 20(11):3084-8. PubMed ID: 24522895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-step electrodeposition construction of flower-on-sheet hierarchical cobalt hydroxide nano-forest for high-capacitance supercapacitors.
    Yang W; Gao Z; Ma J; Wang J; Zhang X; Liu L
    Dalton Trans; 2013 Nov; 42(44):15706-15. PubMed ID: 24048435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nickel Hydroxide Supercapacitor with a Theoretical Capacitance and High Rate Capability Based on Hollow Dendritic 3D-Nickel Current Collectors.
    Kim SW; Kim IH; Kim SI; Jang JH
    Chem Asian J; 2017 Jun; 12(12):1291-1296. PubMed ID: 28467673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling the Cooling Rate of Hydrothermal Synthesis to Enhance the Supercapacitive Properties of β-Nickel Hydroxide Electrode Materials.
    Lu YM; Hong SH
    Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37629867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low cost facile synthesis of large-area cobalt hydroxide nanorods with remarkable pseudocapacitance.
    Deng MJ; Song CZ; Wang CC; Tseng YC; Chen JM; Lu KT
    ACS Appl Mater Interfaces; 2015 May; 7(17):9147-56. PubMed ID: 25874993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Hollow Flower-like CoWO
    Chu D; Guo D; Xiao B; Tan L; Ma H; Pang H; Wang X; Jiang Y
    Chem Asian J; 2020 Jun; 15(11):1750-1755. PubMed ID: 32307903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ synthesis of 3D CoS nanoflake/Ni(OH)₂ nanosheet nanocomposite structure as a candidate supercapacitor electrode.
    Li S; Wen J; Chen T; Xiong L; Wang J; Fang G
    Nanotechnology; 2016 Apr; 27(14):145401. PubMed ID: 26905933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Freestanding two-dimensional Ni(OH)
    Song D; Zhu J; Xuan L; Zhao C; Xie L; Chen L
    J Colloid Interface Sci; 2018 Jan; 509():163-170. PubMed ID: 28898736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D TiO2@Ni(OH)2 Core-shell Arrays with Tunable Nanostructure for Hybrid Supercapacitor Application.
    Ke Q; Zheng M; Liu H; Guan C; Mao L; Wang J
    Sci Rep; 2015 Sep; 5():13940. PubMed ID: 26353970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flower-shaped Ni(OH)
    Yan X; Wu S; Sun X; Yang J; Wang J; Tian S; Wang Y; Chen C; Yin F; Zhang P; Yang Q
    Nanotechnology; 2024 Jan; 35(13):. PubMed ID: 38035400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrathin nickel hydroxide nanosheet arrays grafted biomass-derived honeycomb-like porous carbon with improved electrochemical performance as a supercapacitive material.
    Nagaraju G; Cha SM; Yu JS
    Sci Rep; 2017 Mar; 7():45201. PubMed ID: 28338067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyol-mediated synthesis of mesoporous α-Ni(OH)2 with enhanced supercapacitance.
    Du H; Jiao L; Cao K; Wang Y; Yuan H
    ACS Appl Mater Interfaces; 2013 Jul; 5(14):6643-8. PubMed ID: 23799889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ethylenediamine-assisted growth of multi-dimensional ZnS nanostructures and study of its charge transfer mechanism on supercapacitor electrode and photocatalytic performance.
    Bhushan M; Jha R; Sharma R; Bhardwaj R
    Nanotechnology; 2020 Mar; 31(23):235602. PubMed ID: 32053814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced supercapacitive performance of chemically grown cobalt-nickel hydroxides on three-dimensional graphene foam electrodes.
    Patil UM; Sohn JS; Kulkarni SB; Lee SC; Park HG; Gurav KV; Kim JH; Jun SC
    ACS Appl Mater Interfaces; 2014 Feb; 6(4):2450-8. PubMed ID: 24495203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Achieving Ultrahigh Capacity with Self-Assembled Ni(OH)
    Liu YL; Yan C; Wang GG; Zhang HY; Dang LY; Wu BW; Lin ZQ; An XS; Han JC
    ACS Appl Mater Interfaces; 2019 Mar; 11(10):9984-9993. PubMed ID: 30784276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-Scale Self-Assembly of 3D Flower-like Hierarchical Ni/Co-LDHs Microspheres for High-Performance Flexible Asymmetric Supercapacitors.
    Li T; Li GH; Li LH; Liu L; Xu Y; Ding HY; Zhang T
    ACS Appl Mater Interfaces; 2016 Feb; 8(4):2562-72. PubMed ID: 26751174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.