BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 27251124)

  • 1. Increase of anthraquinone content in Rubia cordifolia cells transformed by native and constitutively active forms of the AtCPK1 gene.
    Shkryl YN; Veremeichik GN; Makhazen DS; Silantieva SA; Mishchenko NP; Vasileva EA; Fedoreyev SA; Bulgakov VP
    Plant Cell Rep; 2016 Sep; 35(9):1907-16. PubMed ID: 27251124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induction of anthraquinone biosynthesis in Rubia cordifolia cells by heterologous expression of a calcium-dependent protein kinase gene.
    Shkryl YN; Veremeichik GN; Bulgakov VP; Zhuravlev YN
    Biotechnol Bioeng; 2011 Jul; 108(7):1734-8. PubMed ID: 21328322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inactivation of the auto-inhibitory domain in Arabidopsis AtCPK1 leads to increased salt, cold and heat tolerance in the AtCPK1-transformed Rubia cordifolia L cell cultures.
    Veremeichik GN; Shkryl YN; Gorpenchenko TY; Silantieva SA; Avramenko TV; Brodovskaya EV; Bulgakov VP
    Plant Physiol Biochem; 2021 Feb; 159():372-382. PubMed ID: 33444896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CDPK-driven changes in the intracellular ROS level and plant secondary metabolism.
    Bulgakov VP; Gorpenchenko TY; Shkryl YN; Veremeichik GN; Mischenko NP; Avramenko TV; Fedoreyev SA; Zhuravlev YN
    Bioeng Bugs; 2011; 2(6):327-30. PubMed ID: 22064507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increase in isoflavonoid content in Glycine max cells transformed by the constitutively active Ca
    Veremeichik GN; Grigorchuk VP; Silanteva SA; Shkryl YN; Bulgakov DV; Brodovskaya EV; Bulgakov VP
    Phytochemistry; 2019 Jan; 157():111-120. PubMed ID: 30399493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of anthraquinone biosynthesis in long-cultured callus culture of Rubia cordifolia transformed with the rolA plant oncogene.
    Veremeichik GN; Bulgakov VP; Shkryl YN; Silantieva SA; Makhazen DS; Tchernoded GK; Mischenko NP; Fedoreyev SA; Vasileva EA
    J Biotechnol; 2019 Dec; 306():38-46. PubMed ID: 31526834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Ca(2+) channel blockers and protein kinase/phosphatase inhibitors on growth and anthraquinone production in Rubia cordifolia callus cultures transformed by the rolB and rolC genes.
    Bulgakov VP; Tchernoded GK; Mischenko NP; Shkryl YN; Glazunov VP; Fedoreyev SA; Zhuravlev YN
    Planta; 2003 Jul; 217(3):349-55. PubMed ID: 14520561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increase in anthraquinone content in Rubia cordifolia cells transformed by rol genes does not involve activation of the NADPH oxidase signaling pathway.
    Bulgakov VP; Tchernoded GK; Mischenko NP; Shkryl YN; Glazunov VP; Fedoreyev SA; Zhuravlev YN
    Biochemistry (Mosc); 2003 Jul; 68(7):795-801. PubMed ID: 12946262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Individual and combined effects of the rolA, B, and C genes on anthraquinone production in Rubia cordifolia transformed calli.
    Shkryl YN; Veremeichik GN; Bulgakov VP; Tchernoded GK; Mischenko NP; Fedoreyev SA; Zhuravlev YN
    Biotechnol Bioeng; 2008 May; 100(1):118-25. PubMed ID: 18023060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of NADPH-oxidase gene expression in rolB-transformed calli of Arabidopsis thaliana and Rubia cordifolia.
    Veremeichik G; Bulgakov V; Shkryl Y
    Plant Physiol Biochem; 2016 Aug; 105():282-289. PubMed ID: 27208504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression profiles of calcium-dependent protein kinase genes (CDPK1-14) in Agrobacterium rhizogenes pRiA4-transformed calli of Rubia cordifolia under temperature- and salt-induced stresses.
    Veremeichik GN; Shkryl YN; Pinkus SA; Bulgakov VP
    J Plant Physiol; 2014 Apr; 171(7):467-74. PubMed ID: 24655382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arabidopsis calcium-dependent protein kinase AtCPK1 plays a positive role in salt/drought-stress response.
    Huang K; Peng L; Liu Y; Yao R; Liu Z; Li X; Yang Y; Wang J
    Biochem Biophys Res Commun; 2018 Mar; 498(1):92-98. PubMed ID: 29196259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteome-Level Investigation of
    Veremeichik GN; Bulgakov DV; Konnova YA; Brodovskaya EV; Grigorchuk VP; Bulgakov VP
    Int J Mol Sci; 2023 Aug; 24(17):. PubMed ID: 37685990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suppression of reactive oxygen species and enhanced stress tolerance in Rubia cordifolia cells expressing the rolC oncogene.
    Bulgakov VP; Aminin DL; Shkryl YN; Gorpenchenko TY; Veremeichik GN; Dmitrenok PS; Zhuravlev YN
    Mol Plant Microbe Interact; 2008 Dec; 21(12):1561-70. PubMed ID: 18986252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of salicylic acid, methyl jasmonate, ethephon and cantharidin on anthraquinone production by Rubia cordifolia callus cultures transformed with the rolB and rolC genes.
    Bulgakov VP; Tchernoded GK; Mischenko NP; Khodakovskaya MV; Glazunov VP; Radchenko SV; Zvereva EV; Fedoreyev SA; Zhuravlev YN
    J Biotechnol; 2002 Aug; 97(3):213-21. PubMed ID: 12084477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selection and Validation of Appropriate Reference Genes for Quantitative RT-PCR Analysis in
    Yi S; Lin Q; Zhang X; Wang J; Miao Y; Tan N
    Biomed Res Int; 2020; 2020():5824841. PubMed ID: 31998793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AtCPK1 calcium-dependent protein kinase mediates pathogen resistance in Arabidopsis.
    Coca M; San Segundo B
    Plant J; 2010 Aug; 63(3):526-40. PubMed ID: 20497373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Managing activity and Ca
    Veremeichik GN; Shkryl YN; Silantieva SA; Gorpenchenko TY; Brodovskaya EV; Yatsunskaya MS; Bulgakov VP
    Plant Physiol Biochem; 2021 Aug; 165():104-113. PubMed ID: 34034156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De Novo Transcriptome Analysis Reveals Putative Genes Involved in Anthraquinone Biosynthesis in
    Zhang R; Miao Y; Chen L; Yi S; Tan N
    Genes (Basel); 2022 Mar; 13(3):. PubMed ID: 35328075
    [No Abstract]   [Full Text] [Related]  

  • 20. Engineering high yields of secondary metabolites in Rubia cell cultures through transformation with rol genes.
    Bulgakov VP; Shkryl YN; Veremeichik GN
    Methods Mol Biol; 2010; 643():229-42. PubMed ID: 20552455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.