BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1286 related articles for article (PubMed ID: 27251275)

  • 1. Proteogenomics connects somatic mutations to signalling in breast cancer.
    Mertins P; Mani DR; Ruggles KV; Gillette MA; Clauser KR; Wang P; Wang X; Qiao JW; Cao S; Petralia F; Kawaler E; Mundt F; Krug K; Tu Z; Lei JT; Gatza ML; Wilkerson M; Perou CM; Yellapantula V; Huang KL; Lin C; McLellan MD; Yan P; Davies SR; Townsend RR; Skates SJ; Wang J; Zhang B; Kinsinger CR; Mesri M; Rodriguez H; Ding L; Paulovich AG; Fenyö D; Ellis MJ; Carr SA;
    Nature; 2016 Jun; 534(7605):55-62. PubMed ID: 27251275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tyrosine phosphorylation profiling reveals the signaling network characteristics of Basal breast cancer cells.
    Hochgräfe F; Zhang L; O'Toole SA; Browne BC; Pinese M; Porta Cubas A; Lehrbach GM; Croucher DR; Rickwood D; Boulghourjian A; Shearer R; Nair R; Swarbrick A; Faratian D; Mullen P; Harrison DJ; Biankin AV; Sutherland RL; Raftery MJ; Daly RJ
    Cancer Res; 2010 Nov; 70(22):9391-401. PubMed ID: 20861192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tumor Profiling: Adding Proteomics to Genomics.
    Cancer Discov; 2016 Aug; 6(8):OF5. PubMed ID: 27354270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive molecular portraits of human breast tumours.
    Cancer Genome Atlas Network
    Nature; 2012 Oct; 490(7418):61-70. PubMed ID: 23000897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global characterization of signalling networks associated with tamoxifen resistance in breast cancer.
    Browne BC; Hochgräfe F; Wu J; Millar EK; Barraclough J; Stone A; McCloy RA; Lee CS; Roberts C; Ali NA; Boulghourjian A; Schmich F; Linding R; Farrow L; Gee JM; Nicholson RI; O'Toole SA; Sutherland RL; Musgrove EA; Butt AJ; Daly RJ
    FEBS J; 2013 Nov; 280(21):5237-57. PubMed ID: 23876235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth and molecular interactions of the anti-EGFR antibody cetuximab and the DNA cross-linking agent cisplatin in gefitinib-resistant MDA-MB-468 cells: new prospects in the treatment of triple-negative/basal-like breast cancer.
    Oliveras-Ferraros C; Vazquez-Martin A; López-Bonet E; Martín-Castillo B; Del Barco S; Brunet J; Menendez JA
    Int J Oncol; 2008 Dec; 33(6):1165-76. PubMed ID: 19020749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioinformatics exploration of PAK1 (P21-activated kinase-1) revealed potential network gene elements in breast invasive carcinoma.
    Yellapu NK; Pulaganti M; Pakala SB
    J Biomol Struct Dyn; 2017 Aug; 35(10):2269-2279. PubMed ID: 27456030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ErbB2-driven breast cancer cell invasion depends on a complex signaling network activating myeloid zinc finger-1-dependent cathepsin B expression.
    Rafn B; Nielsen CF; Andersen SH; Szyniarowski P; Corcelle-Termeau E; Valo E; Fehrenbacher N; Olsen CJ; Daugaard M; Egebjerg C; Bøttzauw T; Kohonen P; Nylandsted J; Hautaniemi S; Moreira J; Jäättelä M; Kallunki T
    Mol Cell; 2012 Mar; 45(6):764-76. PubMed ID: 22464443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Survivin expression is regulated by coexpression of human epidermal growth factor receptor 2 and epidermal growth factor receptor via phosphatidylinositol 3-kinase/AKT signaling pathway in breast cancer cells.
    Asanuma H; Torigoe T; Kamiguchi K; Hirohashi Y; Ohmura T; Hirata K; Sato M; Sato N
    Cancer Res; 2005 Dec; 65(23):11018-25. PubMed ID: 16322251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Post-transcriptional regulation of chemokine receptor CXCR4 by estrogen in HER2 overexpressing, estrogen receptor-positive breast cancer cells.
    Sengupta S; Schiff R; Katzenellenbogen BS
    Breast Cancer Res Treat; 2009 Sep; 117(2):243-51. PubMed ID: 18807177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Ste20-like kinase SLK is required for ErbB2-driven breast cancer cell motility.
    Roovers K; Wagner S; Storbeck CJ; O'Reilly P; Lo V; Northey JJ; Chmielecki J; Muller WJ; Siegel PM; Sabourin LA
    Oncogene; 2009 Aug; 28(31):2839-48. PubMed ID: 19525980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neu differentiation factor (Heregulin) activates a p53-dependent pathway in cancer cells.
    Bacus SS; Yarden Y; Oren M; Chin DM; Lyass L; Zelnick CR; Kazarov A; Toyofuku W; Gray-Bablin J; Beerli RR; Hynes NE; Nikiforov M; Haffner R; Gudkov A; Keyomarsi K
    Oncogene; 1996 Jun; 12(12):2535-47. PubMed ID: 8700512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rare oncogenic mutations of predictive markers for targeted therapy in triple-negative breast cancer.
    Grob TJ; Heilenkötter U; Geist S; Paluchowski P; Wilke C; Jaenicke F; Quaas A; Wilczak W; Choschzick M; Sauter G; Lebeau A
    Breast Cancer Res Treat; 2012 Jul; 134(2):561-7. PubMed ID: 22610646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tyrosine kinase signalling in breast cancer: tyrosine kinase-mediated signal transduction in transgenic mouse models of human breast cancer.
    Andrechek ER; Muller WJ
    Breast Cancer Res; 2000; 2(3):211-6. PubMed ID: 11250712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using the MCF10A/MCF10CA1a Breast Cancer Progression Cell Line Model to Investigate the Effect of Active, Mutant Forms of EGFR in Breast Cancer Development and Treatment Using Gefitinib.
    Bessette DC; Tilch E; Seidens T; Quinn MC; Wiegmans AP; Shi W; Cocciardi S; McCart-Reed A; Saunus JM; Simpson PT; Grimmond SM; Lakhani SR; Khanna KK; Waddell N; Al-Ejeh F; Chenevix-Trench G
    PLoS One; 2015; 10(5):e0125232. PubMed ID: 25969993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transforming growth factor {beta} (TGF-{beta})-Smad target gene protein tyrosine phosphatase receptor type kappa is required for TGF-{beta} function.
    Wang SE; Wu FY; Shin I; Qu S; Arteaga CL
    Mol Cell Biol; 2005 Jun; 25(11):4703-15. PubMed ID: 15899872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compensatory ErbB3/c-Src signaling enhances carcinoma cell survival to ionizing radiation.
    Contessa JN; Abell A; Mikkelsen RB; Valerie K; Schmidt-Ullrich RK
    Breast Cancer Res Treat; 2006 Jan; 95(1):17-27. PubMed ID: 16267617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of mitogen-activated protein kinase in estrogen receptor alpha-positive breast cancer cells in vitro induces an in vivo molecular phenotype of estrogen receptor alpha-negative human breast tumors.
    Creighton CJ; Hilger AM; Murthy S; Rae JM; Chinnaiyan AM; El-Ashry D
    Cancer Res; 2006 Apr; 66(7):3903-11. PubMed ID: 16585219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome wide proteomics of ERBB2 and EGFR and other oncogenic pathways in inflammatory breast cancer.
    Zhang EY; Cristofanilli M; Robertson F; Reuben JM; Mu Z; Beavis RC; Im H; Snyder M; Hofree M; Ideker T; Omenn GS; Fanayan S; Jeong SK; Paik YK; Zhang AF; Wu SL; Hancock WS
    J Proteome Res; 2013 Jun; 12(6):2805-17. PubMed ID: 23647160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Circulating-free DNA Mutation Associated with Response of Targeted Therapy in Human Epidermal Growth Factor Receptor 2-positive Metastatic Breast Cancer.
    Ye Q; Qi F; Bian L; Zhang SH; Wang T; Jiang ZF
    Chin Med J (Engl); 2017 Mar; 130(5):522-529. PubMed ID: 28229982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 65.