BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 27251631)

  • 21. Responses of collicular fixation neurons to gaze shift perturbations in head-unrestrained monkey reveal gaze feedback control.
    Choi WY; Guitton D
    Neuron; 2006 May; 50(3):491-505. PubMed ID: 16675402
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Triggering mechanisms in microsaccade and saccade generation: a novel proposal.
    Otero-Millan J; Macknik SL; Serra A; Leigh RJ; Martinez-Conde S
    Ann N Y Acad Sci; 2011 Sep; 1233():107-16. PubMed ID: 21950983
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neural activity in the primate superior colliculus and saccadic reaction times in double-step experiments.
    Lünenburger L; Lindner W; Hoffmann KP
    Prog Brain Res; 2003; 142():91-107. PubMed ID: 12693256
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of the discharge characteristics of brain stem omnipause neurons and superior colliculus fixation neurons in monkey: implications for control of fixation and saccade behavior.
    Everling S; Paré M; Dorris MC; Munoz DP
    J Neurophysiol; 1998 Feb; 79(2):511-28. PubMed ID: 9463418
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Discharge properties of monkey tectoreticular neurons.
    Rodgers CK; Munoz DP; Scott SH; Paré M
    J Neurophysiol; 2006 Jun; 95(6):3502-11. PubMed ID: 16641382
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Contribution of the frontal eye field to gaze shifts in the head-unrestrained rhesus monkey: neuronal activity.
    Knight TA
    Neuroscience; 2012 Dec; 225():213-36. PubMed ID: 22944386
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of the rostral superior colliculus in active visual fixation and execution of express saccades.
    Munoz DP; Wurtz RH
    J Neurophysiol; 1992 Apr; 67(4):1000-2. PubMed ID: 1588382
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Similarity of superior colliculus involvement in microsaccade and saccade generation.
    Hafed ZM; Krauzlis RJ
    J Neurophysiol; 2012 Apr; 107(7):1904-16. PubMed ID: 22236714
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Removal of inhibition uncovers latent movement potential during preparation.
    Jagadisan UK; Gandhi NJ
    Elife; 2017 Sep; 6():. PubMed ID: 28891467
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deficits in saccade target selection after inactivation of superior colliculus.
    McPeek RM; Keller EL
    Nat Neurosci; 2004 Jul; 7(7):757-63. PubMed ID: 15195099
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Visual Experience Is Required for the Development of Eye Movement Maps in the Mouse Superior Colliculus.
    Wang L; Liu M; Segraves MA; Cang J
    J Neurosci; 2015 Sep; 35(35):12281-6. PubMed ID: 26338338
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Perturbation of combined saccade-vergence movements by microstimulation in monkey superior colliculus.
    Chaturvedi V; van Gisbergen JA
    J Neurophysiol; 1999 May; 81(5):2279-96. PubMed ID: 10322066
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predictive saccade target selection in superior colliculus during visual search.
    Shen K; Paré M
    J Neurosci; 2014 Apr; 34(16):5640-8. PubMed ID: 24741054
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Blink perturbation effects on saccades evoked by microstimulation of the superior colliculus.
    Katnani HA; Van Opstal AJ; Gandhi NJ
    PLoS One; 2012; 7(12):e51843. PubMed ID: 23251639
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Superior colliculus encodes distance to target, not saccade amplitude, in multi-step gaze shifts.
    Bergeron A; Matsuo S; Guitton D
    Nat Neurosci; 2003 Apr; 6(4):404-13. PubMed ID: 12627166
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Target selection for saccadic eye movements: direction-selective visual responses in the superior colliculus.
    Horwitz GD; Newsome WT
    J Neurophysiol; 2001 Nov; 86(5):2527-42. PubMed ID: 11698540
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synaptic inputs and their pathways from fixation and saccade zones of the superior colliculus to inhibitory burst neurons and pause neurons.
    Takahashi M; Sugiuchi Y; Izawa Y; Shinoda Y
    Ann N Y Acad Sci; 2005 Apr; 1039():209-19. PubMed ID: 15826975
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microsaccadic suppression of visual bursts in the primate superior colliculus.
    Hafed ZM; Krauzlis RJ
    J Neurosci; 2010 Jul; 30(28):9542-7. PubMed ID: 20631182
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Activity of the brain stem omnipause neurons during saccades perturbed by stimulation of the primate superior colliculus.
    Gandhi NJ; Keller EL
    J Neurophysiol; 1999 Dec; 82(6):3254-67. PubMed ID: 10601458
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neural network models for the gaze shift system in the superior colliculus and cerebellum.
    Wang X; Jin J; Jabri M
    Neural Netw; 2002 Sep; 15(7):811-32. PubMed ID: 14672160
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.