These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 27251650)

  • 21. Chemical exchange effects during refocusing pulses in constant-time CPMG relaxation dispersion experiments.
    Myint W; Ishima R
    J Biomol NMR; 2009 Sep; 45(1-2):207-16. PubMed ID: 19618276
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Probing invisible, low-populated States of protein molecules by relaxation dispersion NMR spectroscopy: an application to protein folding.
    Korzhnev DM; Kay LE
    Acc Chem Res; 2008 Mar; 41(3):442-51. PubMed ID: 18275162
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent developments in deuterium solid-state NMR for the detection of slow motions in proteins.
    Vugmeyster L
    Solid State Nucl Magn Reson; 2021 Feb; 111():101710. PubMed ID: 33450712
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A 2H NMR relaxation experiment for the measurement of the time scale of methyl side-chain dynamics in large proteins.
    Tugarinov V; Kay LE
    J Am Chem Soc; 2006 Sep; 128(38):12484-9. PubMed ID: 16984199
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multi-probe relaxation dispersion measurements increase sensitivity to protein dynamics.
    Fenwick RB; Oyen D; Wright PE
    Phys Chem Chem Phys; 2016 Feb; 18(8):5789-98. PubMed ID: 26426424
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microsecond time-scale conformational exchange in proteins: using long molecular dynamics trajectory to simulate NMR relaxation dispersion data.
    Xue Y; Ward JM; Yuwen T; Podkorytov IS; Skrynnikov NR
    J Am Chem Soc; 2012 Feb; 134(5):2555-62. PubMed ID: 22206299
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protein conformational exchange measured by 1H R1ρ relaxation dispersion of methyl groups.
    Weininger U; Blissing AT; Hennig J; Ahlner A; Liu Z; Vogel HJ; Akke M; Lundström P
    J Biomol NMR; 2013 Sep; 57(1):47-55. PubMed ID: 23904100
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Measurement of intermediate exchange phenomena.
    Kempf JG; Loria JP
    Methods Mol Biol; 2004; 278():185-231. PubMed ID: 15317998
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Off-resonance rotating-frame relaxation dispersion experiment for 13C in aromatic side chains using L-optimized TROSY-selection.
    Weininger U; Brath U; Modig K; Teilum K; Akke M
    J Biomol NMR; 2014 May; 59(1):23-9. PubMed ID: 24706175
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Proton-decoupled CPMG: a better experiment for measuring (15)N R2 relaxation in disordered proteins.
    Yuwen T; Skrynnikov NR
    J Magn Reson; 2014 Apr; 241():155-69. PubMed ID: 24120537
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Measuring 1HN temperature coefficients in invisible protein states by relaxation dispersion NMR spectroscopy.
    Bouvignies G; Vallurupalli P; Cordes MH; Hansen DF; Kay LE
    J Biomol NMR; 2011 May; 50(1):13-8. PubMed ID: 21424227
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of 13CH3, 13CH2D, and 13CHD2 methyl labeling strategies in proteins.
    Ollerenshaw JE; Tugarinov V; Skrynnikov NR; Kay LE
    J Biomol NMR; 2005 Sep; 33(1):25-41. PubMed ID: 16222555
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fractional enrichment of proteins using [2-(13)C]-glycerol as the carbon source facilitates measurement of excited state 13Cα chemical shifts with improved sensitivity.
    Ahlner A; Andresen C; Khan SN; Kay LE; Lundström P
    J Biomol NMR; 2015 Jul; 62(3):341-51. PubMed ID: 25990019
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of enzyme motions by solution NMR relaxation dispersion.
    Loria JP; Berlow RB; Watt ED
    Acc Chem Res; 2008 Feb; 41(2):214-21. PubMed ID: 18281945
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Probing slow dynamics in high molecular weight proteins by methyl-TROSY NMR spectroscopy: application to a 723-residue enzyme.
    Korzhnev DM; Kloiber K; Kanelis V; Tugarinov V; Kay LE
    J Am Chem Soc; 2004 Mar; 126(12):3964-73. PubMed ID: 15038751
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Probing the Broad Time Scale and Heterogeneous Conformational Dynamics in the Catalytic Core of the Arf-GAP ASAP1 via Methyl Adiabatic Relaxation Dispersion.
    Chao FA; Li Y; Zhang Y; Byrd RA
    J Am Chem Soc; 2019 Jul; 141(30):11881-11891. PubMed ID: 31293161
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Accurate measurement of alpha proton chemical shifts of excited protein states by relaxation dispersion NMR spectroscopy.
    Lundström P; Hansen DF; Vallurupalli P; Kay LE
    J Am Chem Soc; 2009 Feb; 131(5):1915-26. PubMed ID: 19152327
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantitative analysis of the slow exchange process by
    Toyama Y; Shimada I
    J Biomol NMR; 2024 Jun; ():. PubMed ID: 38918317
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Isotope labeling methods for relaxation measurements.
    Lundström P; Ahlner A; Blissing AT
    Adv Exp Med Biol; 2012; 992():63-82. PubMed ID: 23076579
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Relaxation rates of degenerate 1H transitions in methyl groups of proteins as reporters of side-chain dynamics.
    Tugarinov V; Kay LE
    J Am Chem Soc; 2006 Jun; 128(22):7299-308. PubMed ID: 16734484
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.