These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 27251873)

  • 1. Shifting El Niño inhibits summer Arctic warming and Arctic sea-ice melting over the Canada Basin.
    Hu C; Yang S; Wu Q; Li Z; Chen J; Deng K; Zhang T; Zhang C
    Nat Commun; 2016 Jun; 7():11721. PubMed ID: 27251873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arctic sea-ice loss is projected to lead to more frequent strong El Niño events.
    Liu J; Song M; Zhu Z; Horton RM; Hu Y; Xie SP
    Nat Commun; 2022 Aug; 13(1):4952. PubMed ID: 35999238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The linearity of the El Niño teleconnection to the Amundsen Sea region.
    Yiu YYS; Maycock AC
    Q J R Meteorol Soc; 2020 Apr; 146(728):1169-1183. PubMed ID: 32616968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arctic-Eurasian climate linkage induced by tropical ocean variability.
    Matsumura S; Kosaka Y
    Nat Commun; 2019 Aug; 10(1):3441. PubMed ID: 31371710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arctic sea ice-air interactions weaken El Niño-Southern Oscillation.
    Deng J; Dai A
    Sci Adv; 2024 Mar; 10(13):eadk3990. PubMed ID: 38552020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A distinct and reproducible teleconnection pattern over North America during extreme El Niño events.
    Beniche M; Vialard J; Lengaigne M; Voldoire A; Srinivas G; Hall NMJ
    Sci Rep; 2024 Jan; 14(1):2457. PubMed ID: 38291103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ARCTIC CHANGE AND POSSIBLE INFLUENCE ON MID-LATITUDE CLIMATE AND WEATHER: A US CLIVAR White Paper.
    Cohen J; Zhang X; Francis J; Jung T; Kwok R; Overland J; Ballinger T; Blackport R; Bhatt US; Chen H; Coumou D; Feldstein S; Handorf D; Hell M; Henderson G; Ionita M; Kretschmer M; Laliberte F; Lee S; Linderholm H; Maslowski W; Rigor I; Routson C; Screen J; Semmler T; Singh D; Smith D; Stroeve J; Taylor PC; Vihma T; Wang M; Wang S; Wu Y; Wendisch M; Yoon J
    US CLIVAR Rep; 2018 Mar; n/a():. PubMed ID: 31633127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of Arctic sea-ice variability on Pacific trade winds.
    Kennel CF; Yulaeva E
    Proc Natl Acad Sci U S A; 2020 Feb; 117(6):2824-2834. PubMed ID: 31988128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Origins of Barents-Kara sea-ice interannual variability modulated by the Atlantic pathway of El Niño-Southern Oscillation.
    Luo B; Luo D; Ge Y; Dai A; Wang L; Simmonds I; Xiao C; Wu L; Yao Y
    Nat Commun; 2023 Feb; 14(1):585. PubMed ID: 36737448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of atmospheric teleconnections on interannual variability of Arctic-boreal fires.
    Zhao Z; Lin Z; Li F; Rogers BM
    Sci Total Environ; 2022 Sep; 838(Pt 4):156550. PubMed ID: 35688252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exceptionally strong easterly wind burst stalling El Niño of 2014.
    Hu S; Fedorov AV
    Proc Natl Acad Sci U S A; 2016 Feb; 113(8):2005-10. PubMed ID: 26858437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tropical explosive volcanic eruptions can trigger El Niño by cooling tropical Africa.
    Khodri M; Izumo T; Vialard J; Janicot S; Cassou C; Lengaigne M; Mignot J; Gastineau G; Guilyardi E; Lebas N; Robock A; McPhaden MJ
    Nat Commun; 2017 Oct; 8(1):778. PubMed ID: 28974676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent autumn sea ice loss in the eastern Arctic enhanced by summer Asian-Pacific Oscillation.
    Zhou B; Song Z; Yin Z; Xu X; Sun B; Hsu P; Chen H
    Nat Commun; 2024 Mar; 15(1):2798. PubMed ID: 38555365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early 20th-century Arctic warming intensified by Pacific and Atlantic multidecadal variability.
    Tokinaga H; Xie SP; Mukougawa H
    Proc Natl Acad Sci U S A; 2017 Jun; 114(24):6227-6232. PubMed ID: 28559341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct impacts of major El Niño events on Arctic temperatures due to differences in eastern tropical Pacific sea surface temperatures.
    Jeong H; Park HS; Stuecker MF; Yeh SW
    Sci Adv; 2022 Jan; 8(4):eabl8278. PubMed ID: 35080975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland.
    Ding Q; Wallace JM; Battisti DS; Steig EJ; Gallant AJ; Kim HJ; Geng L
    Nature; 2014 May; 509(7499):209-12. PubMed ID: 24805345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Greenhouse warming and internal variability increase extreme and central Pacific El Niño frequency since 1980.
    Gan R; Liu Q; Huang G; Hu K; Li X
    Nat Commun; 2023 Jan; 14(1):394. PubMed ID: 36693829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear response of tropical lower stratospheric temperature and water vapor to ENSO.
    Garfinkel CI; Gordon A; Oman LD; Li F; Davis S; Pawson S
    Atmos Chem Phys; 2018; 18(7):4597-4615. PubMed ID: 30008736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlinear response of Northern Hemisphere stratospheric polar vortex to the Indo-Pacific warm pool (IPWP) Niño.
    Zhou X; Chen Q; Xie F; Li J; Li M; Ding R; Li Y; Xia X; Cheng Z
    Sci Rep; 2019 Sep; 9(1):13719. PubMed ID: 31548548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. El Niño in a changing climate.
    Yeh SW; Kug JS; Dewitte B; Kwon MH; Kirtman BP; Jin FF
    Nature; 2009 Sep; 461(7263):511-4. PubMed ID: 19779449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.