These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 27251873)

  • 21. Influence of El Niño events on sea surface salinity over the central equatorial Indian Ocean.
    Yue W; Lin L; Xiaotong Z
    Environ Res; 2020 Mar; 182():109097. PubMed ID: 31911234
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The cause of the fragile relationship between the Pacific El Niño and the Atlantic Niño.
    Chang P; Fang Y; Saravanan R; Ji L; Seidel H
    Nature; 2006 Sep; 443(7109):324-8. PubMed ID: 16988709
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Increasing large wildfires over the western United States linked to diminishing sea ice in the Arctic.
    Zou Y; Rasch PJ; Wang H; Xie Z; Zhang R
    Nat Commun; 2021 Oct; 12(1):6048. PubMed ID: 34702824
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Response of Pacific-sector Antarctic ice shelves to the El Niño/Southern Oscillation.
    Paolo FS; Padman L; Fricker HA; Adusumilli S; Howard S; Siegfried MR
    Nat Geosci; 2018; 11(2):121-126. PubMed ID: 29333198
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Robust contribution of decadal anomalies to the frequency of central-Pacific El Niño.
    Sullivan A; Luo JJ; Hirst AC; Bi D; Cai W; He J
    Sci Rep; 2016 Dec; 6():38540. PubMed ID: 27917936
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Explained predictions of strong eastern Pacific El Niño events using deep learning.
    Rivera Tello GA; Takahashi K; Karamperidou C
    Sci Rep; 2023 Nov; 13(1):21150. PubMed ID: 38036532
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The 2015/2016 El Niño Event in Context of the MERRA-2 Reanalysis: A Comparison of the Tropical Pacific with 1982/1983 and 1997/1998.
    Lim YK; Kovach RM; Pawson S; Vernieres G
    J Clim; 2017; 30():4819-4842. PubMed ID: 29962660
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On the possible cause of distinct El Niño types in the recent decades.
    Jadhav J; Panickal S; Marathe S; Ashok K
    Sci Rep; 2015 Nov; 5():17009. PubMed ID: 26598274
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unusually warm Indian Ocean sea surface temperatures help to arrest development of El Niño in 2014.
    Dong L; McPhaden MJ
    Sci Rep; 2018 Feb; 8(1):2249. PubMed ID: 29396441
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Weakening Atlantic Niño-Pacific connection under greenhouse warming.
    Jia F; Cai W; Wu L; Gan B; Wang G; Kucharski F; Chang P; Keenlyside N
    Sci Adv; 2019 Aug; 5(8):eaax4111. PubMed ID: 31457105
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simple dynamical models capturing the key features of the Central Pacific El Niño.
    Chen N; Majda AJ
    Proc Natl Acad Sci U S A; 2016 Oct; 113(42):11732-11737. PubMed ID: 27698122
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nonstationary El Niño teleconnection on the post-summer upwelling off Vietnam.
    Wang YL; Wu CR
    Sci Rep; 2020 Aug; 10(1):13319. PubMed ID: 32770007
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pronounced interannual variability in tropical South Pacific temperatures during Heinrich Stadial 1.
    Felis T; Merkel U; Asami R; Deschamps P; Hathorne EC; Kölling M; Bard E; Cabioch G; Durand N; Prange M; Schulz M; Cahyarini SY; Pfeiffer M
    Nat Commun; 2012 Jul; 3():965. PubMed ID: 22828625
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The 2023 extreme coastal El Niño: Atmospheric and air-sea coupling mechanisms.
    Peng Q; Xie SP; Passalacqua GA; Miyamoto A; Deser C
    Sci Adv; 2024 Mar; 10(12):eadk8646. PubMed ID: 38517959
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impacts of different types and intensities of El Niño events on winter aerosols over China.
    Yu X; Wang Z; Zhang H; Zhao S
    Sci Total Environ; 2019 Mar; 655():766-780. PubMed ID: 30476857
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multidecadal variability in the Nile River basin hydroclimate controlled by ENSO and Indian Ocean dipole.
    Mahmoud SH; Gan TY
    Sci Total Environ; 2020 Dec; 748():141529. PubMed ID: 32827894
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ocean circulation along the southern Chile transition region (38°-46°S): Mean, seasonal and interannual variability, with a focus on 2014-2016.
    Strub PT; James C; Montecino V; Rutllant JA; Blanco JL
    Prog Oceanogr; 2019 Mar; 172():159-198. PubMed ID: 33204044
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Acceleration of western Arctic sea ice loss linked to the Pacific North American pattern.
    Liu Z; Risi C; Codron F; He X; Poulsen CJ; Wei Z; Chen D; Li S; Bowen GJ
    Nat Commun; 2021 Mar; 12(1):1519. PubMed ID: 33750823
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Future extreme sea level seesaws in the tropical Pacific.
    Widlansky MJ; Timmermann A; Cai W
    Sci Adv; 2015 Sep; 1(8):e1500560. PubMed ID: 26601272
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recent enhancement of central Pacific El Niño variability relative to last eight centuries.
    Liu Y; Cobb KM; Song H; Li Q; Li CY; Nakatsuka T; An Z; Zhou W; Cai Q; Li J; Leavitt SW; Sun C; Mei R; Shen CC; Chan MH; Sun J; Yan L; Lei Y; Ma Y; Li X; Chen D; Linderholm HW
    Nat Commun; 2017 May; 8():15386. PubMed ID: 28555638
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.