These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 27251986)

  • 1. A method for measuring rotation of a thermal carbon nanomotor using centrifugal effect.
    Cai K; Yu J; Shi J; Qin QH
    Sci Rep; 2016 Jun; 6():27338. PubMed ID: 27251986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rotation measurements of a thermally driven rotary nanomotor with a spring wing.
    Cai K; Yu J; Liu L; Shi J; Qin QH
    Phys Chem Chem Phys; 2016 Aug; 18(32):22478-86. PubMed ID: 27464677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A nanoengine governor based on the end interfacial effect.
    Shi J; Cai K; Qin QH
    Nanotechnology; 2016 Dec; 27(49):495704. PubMed ID: 27827349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic behavior of a rotary nanomotor in argon environments.
    Cai K; Shi J; Yu J; Qin QH
    Sci Rep; 2018 Feb; 8(1):3511. PubMed ID: 29472545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diamond Needles Actuating Triple-Walled Carbon Nanotube to Rotate via Thermal Vibration-Induced Collision.
    Li H; Wang A; Shi J; Liu Y; Cheng G
    Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30845705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Position effects of the graphene-origami actuators on the rotation of a CNT nanomotor.
    Cai K; Sun S; Shi J; Zhang C; Zhang Y
    Phys Chem Chem Phys; 2021 Sep; 23(34):18893-18898. PubMed ID: 34612427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Friction effect of stator in a multi-walled CNT-based rotation transmission system.
    Zhang XN; Cai K; Shi J; Qin QH
    Nanotechnology; 2018 Jan; 29(4):045706. PubMed ID: 29022882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rotation-excited perfect oscillation of a tri-walled nanotube-based oscillator at ultralow temperature.
    Cai K; Zhang X; Shi J; Qin QH
    Nanotechnology; 2017 Apr; 28(15):155701. PubMed ID: 28303802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conditions for escape of a rotor in a rotary nanobearing from short triple-wall nanotubes.
    Shi J; Liu LN; Cai K; Qin QH
    Sci Rep; 2017 Jul; 7(1):6772. PubMed ID: 28755000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Precise control of CNT-DNA assembled nanomotor using oppositely charged dual nanopores.
    Ma C; Xu W; Liu W; Xu C; Si W; Sha J
    Nanoscale; 2023 Jul; 15(26):11052-11063. PubMed ID: 37350160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robust rotation of rotor in a thermally driven nanomotor.
    Cai K; Yu J; Shi J; Qin QH
    Sci Rep; 2017 Apr; 7():46159. PubMed ID: 28393898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A nano continuous variable transmission system from nanotubes.
    Cai K; Shi J; Xie YM; Qin QH
    Nanotechnology; 2018 Feb; 29(7):075707. PubMed ID: 29252205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sudden stoppage of rotor in a thermally driven rotary motor made from double-walled carbon nanotubes.
    Cai K; Yu JZ; Yin H; Qin QH
    Nanotechnology; 2015 Mar; 26(9):095702. PubMed ID: 25676848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Significance tests on the output power of a thermally driven rotary nanomotor.
    Yang L; Cai K; Shi J; Qin QH
    Nanotechnology; 2017 May; 28(21):215705. PubMed ID: 28471751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative control of a rotary carbon nanotube motor under temperature stimulus.
    Cai K; Wan J; Qin QH; Shi J
    Nanotechnology; 2016 Feb; 27(5):055706. PubMed ID: 26757397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficiency of CNT-based rotation transmission nanosystem in water.
    Shi J; Wu P; Li X; Cai K; Zhang Y
    Nanotechnology; 2021 Mar; 32(24):. PubMed ID: 33684895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetically suspended rotary blood pump with radial type combined motor-bearing.
    Masuzawa T; Kita T; Matsuda K; Okada Y
    Artif Organs; 2000 Jun; 24(6):468-74. PubMed ID: 10886067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recoverability of a gigahertz rotation-translation nanoconvertor with hydrogenated deformable rotor at room temperature.
    Song B; Shi J; Hu C; Wang J; Cai K; Zhang C
    Nanotechnology; 2019 Nov; 30(46):465301. PubMed ID: 31476139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Critical Output Torque of a GHz CNT-Based Rotation Transmission System Via Axial Interface Friction at Low Temperature.
    Wu P; Shi J; Wang J; Shen J; Cai K
    Int J Mol Sci; 2019 Aug; 20(16):. PubMed ID: 31394762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ideal Oscillation of a Hydrogenated Deformable Rotor in a Gigahertz Rotation-Translation Nanoconverter at Low Temperatures.
    Song B; Shi J; Wang J; Shen J; Cai K
    Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32244648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.