These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 27252191)
1. Transcriptional Profiling of Metabolic Transitions during Development and Diapause Preparation in the Copepod Calanus finmarchicus. Tarrant AM; Baumgartner MF; Lysiak NS; Altin D; Størseth TR; Hansen BH Integr Comp Biol; 2016 Dec; 56(6):1157-1169. PubMed ID: 27252191 [TBL] [Abstract][Full Text] [Related]
2. Transcriptional profiling of reproductive development, lipid storage and molting throughout the last juvenile stage of the marine copepod Calanus finmarchicus. Tarrant AM; Baumgartner MF; Hansen BH; Altin D; Nordtug T; Olsen AJ Front Zool; 2014; 11(1):91. PubMed ID: 25568661 [TBL] [Abstract][Full Text] [Related]
3. Heat shock protein expression during stress and diapause in the marine copepod Calanus finmarchicus. Aruda AM; Baumgartner MF; Reitzel AM; Tarrant AM J Insect Physiol; 2011 May; 57(5):665-75. PubMed ID: 21419129 [TBL] [Abstract][Full Text] [Related]
4. Revealing the profound influence of diapause on gene expression: Insights from the annual transcriptome of the copepod Calanus finmarchicus. Payton L; Last KS; Grigor J; Noirot C; Hüppe L; Conway DVP; Dannemeyer M; Wilcockson D; Meyer B Mol Ecol; 2024 Jul; 33(13):e17425. PubMed ID: 38847383 [TBL] [Abstract][Full Text] [Related]
5. Lipid metabolism in Calanus finmarchicus is sensitive to variations in predation risk and food availability. Skottene E; Tarrant AM; Altin D; Olsen RE; Choquet M; Kvile KØ Sci Rep; 2020 Dec; 10(1):22322. PubMed ID: 33339843 [TBL] [Abstract][Full Text] [Related]
7. The β-oxidation pathway is downregulated during diapause termination in Calanus copepods. Skottene E; Tarrant AM; Olsen AJ; Altin D; Østensen MA; Hansen BH; Choquet M; Jenssen BM; Olsen RE Sci Rep; 2019 Nov; 9(1):16686. PubMed ID: 31723179 [TBL] [Abstract][Full Text] [Related]
8. De novo assembly of a transcriptome for Calanus finmarchicus (Crustacea, Copepoda)--the dominant zooplankter of the North Atlantic Ocean. Lenz PH; Roncalli V; Hassett RP; Wu LS; Cieslak MC; Hartline DK; Christie AE PLoS One; 2014; 9(2):e88589. PubMed ID: 24586345 [TBL] [Abstract][Full Text] [Related]
9. Prediction of the protein components of a putative Calanus finmarchicus (Crustacea, Copepoda) circadian signaling system using a de novo assembled transcriptome. Christie AE; Fontanilla TM; Nesbit KT; Lenz PH Comp Biochem Physiol Part D Genomics Proteomics; 2013 Sep; 8(3):165-93. PubMed ID: 23727418 [TBL] [Abstract][Full Text] [Related]
10. Diversity of insulin-like peptide signaling system proteins in Calanus finmarchicus (Crustacea; Copepoda) - Possible contributors to seasonal pre-adult diapause. Christie AE; Roncalli V; Lenz PH Gen Comp Endocrinol; 2016 Sep; 236():157-173. PubMed ID: 27432815 [TBL] [Abstract][Full Text] [Related]
11. In silico characterization of the insect diapause-associated protein couch potato (CPO) in Calanus finmarchicus (Crustacea: Copepoda). Christie AE; Roncalli V; Lona PB; McCoole MD; King BL; Bucklin A; Hartline DK; Lenz PH Comp Biochem Physiol Part D Genomics Proteomics; 2013 Mar; 8(1):45-57. PubMed ID: 23262277 [TBL] [Abstract][Full Text] [Related]
12. Projected impacts of 21st century climate change on diapause in Calanus finmarchicus. Wilson RJ; Banas NS; Heath MR; Speirs DC Glob Chang Biol; 2016 Oct; 22(10):3332-40. PubMed ID: 26990351 [TBL] [Abstract][Full Text] [Related]
13. Changes in seasonal expression patterns of ecdysone receptor, retinoid X receptor and an A-type allatostatin in the copepod, Calanus finmarchicus, in a sea loch environment: an investigation of possible mediators of diapause. Clark KA; Brierley AS; Pond DW; Smith VJ Gen Comp Endocrinol; 2013 Aug; 189():66-73. PubMed ID: 23603431 [TBL] [Abstract][Full Text] [Related]
14. Transcriptome responses in copepods Calanus finmarchicus, Calanus glacialis and Calanus hyperboreus exposed to phenanthrene and benzo[a]pyrene. Yadetie F; Brun NR; Giebichenstein J; Dmoch K; Hylland K; Borgå K; Karlsen OA; Goksøyr A Mar Genomics; 2022 Oct; 65():100981. PubMed ID: 35969942 [TBL] [Abstract][Full Text] [Related]
16. Transcriptome sequencing and de novo analysis of the copepod Calanus sinicus using 454 GS FLX. Ning J; Wang M; Li C; Sun S PLoS One; 2013; 8(5):e63741. PubMed ID: 23671698 [TBL] [Abstract][Full Text] [Related]
17. The effect of the toxic dinoflagellate Roncalli V; Turner JT; Kulis D; Anderson DM; Lenz PH Harmful Algae; 2016 Jan; 51():56-66. PubMed ID: 27721677 [TBL] [Abstract][Full Text] [Related]
18. Identification and developmental expression of the enzymes responsible for dopamine, histamine, octopamine and serotonin biosynthesis in the copepod crustacean Calanus finmarchicus. Christie AE; Fontanilla TM; Roncalli V; Cieslak MC; Lenz PH Gen Comp Endocrinol; 2014 Jan; 195():28-39. PubMed ID: 24148657 [TBL] [Abstract][Full Text] [Related]
19. Annual transcriptome of a key zooplankton species, the copepod Payton L; Noirot C; Last KS; Grigor J; Hüppe L; Conway DVP; Dannemeyer M; Suin A; Meyer B Ecol Evol; 2022 Feb; 12(2):e8605. PubMed ID: 35228860 [TBL] [Abstract][Full Text] [Related]
20. A Crude Awakening: Effects of Crude Oil on Lipid Metabolism in Calanoid Copepods Terminating Diapause. Skottene E; Tarrant AM; Olsen AJ; Altin D; Hansen BH; Choquet M; Olsen RE; Jenssen BM Biol Bull; 2019 Oct; 237(2):90-110. PubMed ID: 31714858 [No Abstract] [Full Text] [Related] [Next] [New Search]