These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 27252211)

  • 1. Diet Drives the Collective Migrations and Affects the Immunity of Mormon Crickets and Locusts: A Comparison of These Potential Superspreaders of Disease.
    Srygley RB
    Integr Comp Biol; 2016 Aug; 56(2):268-77. PubMed ID: 27252211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein deficiency lowers resistance of Mormon crickets to the pathogenic fungus Beauveria bassiana.
    Srygley RB; Jaronski ST
    J Insect Physiol; 2018; 105():40-45. PubMed ID: 29355499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mycosis inhibits cannibalism by Melanoplus sanguinipes, M. differentialis, Schistocerca americana, and Anabrus simplex.
    Jaronski ST
    J Insect Sci; 2013; 13():122. PubMed ID: 24786183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Age- and density-dependent prophylaxis in the migratory, cannibalistic Mormon cricket Anabrus simplex (Orthoptera: Tettigoniidae).
    Srygley RB
    Environ Entomol; 2012 Feb; 41(1):166-71. PubMed ID: 22525072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coping with uncertainty: nutrient deficiencies motivate insect migration at a cost to immunity.
    Srygley RB; Lorch PD
    Integr Comp Biol; 2013 Dec; 53(6):1002-13. PubMed ID: 23670631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective protein self-deprivation by Mormon crickets following fungal attack.
    Srygley RB
    J Insect Physiol; 2023 Sep; 149():104555. PubMed ID: 37595783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of parental diet on Mormon cricket egg diapause, embryonic development rate, and periodic outbreaks.
    Srygley RB
    J Insect Physiol; 2024 Sep; 157():104681. PubMed ID: 39079656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ontogenetic changes in immunity and susceptibility to fungal infection in Mormon crickets Anabrus simplex.
    Srygley RB
    J Insect Physiol; 2012 Mar; 58(3):342-7. PubMed ID: 22206886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Power Bars: Mormon Crickets Get Immunity Boost from Eating Grasshoppers.
    Srygley RB; Branson DH
    Insects; 2023 Nov; 14(11):. PubMed ID: 37999067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The social context of cannibalism in migratory bands of the Mormon cricket.
    Bazazi S; Ioannou CC; Simpson SJ; Sword GA; Torney CJ; Lorch PD; Couzin ID
    PLoS One; 2010 Dec; 5(12):e15118. PubMed ID: 21179402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loss of safety in numbers and a novel driver of mass migration: radiotelemetry reveals heavy wasp predation on a band of Mormon crickets.
    Srygley RB; Lorch PD
    R Soc Open Sci; 2016 May; 3(5):160113. PubMed ID: 27293791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Behavioral thermoregulation in Locusta migratoria manilensis (Orthoptera: Acrididae) in response to the entomopathogenic fungus, Beauveria bassiana.
    Sangbaramou R; Camara I; Huang XZ; Shen J; Tan SQ; Shi WP
    PLoS One; 2018; 13(11):e0206816. PubMed ID: 30485309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cannibal crickets on a forced march for protein and salt.
    Simpson SJ; Sword GA; Lorch PD; Couzin ID
    Proc Natl Acad Sci U S A; 2006 Mar; 103(11):4152-6. PubMed ID: 16537500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Locusts increase carbohydrate consumption to protect against a fungal biopesticide.
    Graham RI; Deacutis JM; Pulpitel T; Ponton F; Simpson SJ; Wilson K
    J Insect Physiol; 2014 Oct; 69():27-34. PubMed ID: 24862155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laboratory evaluation of Beauveria bassiana and Metarhizium anisopliae in the control of Haemaphysalis qinghaiensis in China.
    Ren Q; Chen Z; Luo J; Liu G; Guan G; Liu Z; Liu A; Li Y; Niu Q; Liu J; Yang J; Han X; Yin H; Luo J
    Exp Appl Acarol; 2016 Jun; 69(2):233-8. PubMed ID: 27071674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of health and growth of ring-necked pheasants following consumption of infected insects or conidia of entomopathogenic fungi, Metarhizium anisopliae var. acridum and Beauveria bassiana, from Madagascar and North America.
    Johnson DL; Smits JE; Jaronski ST; Weaver DK
    J Toxicol Environ Health A; 2002 Dec; 65(24):2145-62. PubMed ID: 12515592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insect behaviour: migratory bands give crickets protection.
    Sword GA; Lorch PD; Gwynne DT
    Nature; 2005 Feb; 433(7027):703. PubMed ID: 15716941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HYD3, a conidial hydrophobin of the fungal entomopathogen Metarhizium acridum induces the immunity of its specialist host locust.
    Jiang ZY; Ligoxygakis P; Xia YX
    Int J Biol Macromol; 2020 Dec; 165(Pt A):1303-1311. PubMed ID: 33022346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Virulence of the insect-pathogenic fungi
    Rangel DEN; Bignayan HG; Golez HG; Keyser CA; Evans EW; Roberts DW
    Bull Entomol Res; 2021 Oct; ():1-8. PubMed ID: 34620258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dose-dependent behavioural fever responses in desert locusts challenged with the entomopathogenic fungus Metarhizium acridum.
    Clancy LM; Jones R; Cooper AL; Griffith GW; Santer RD
    Sci Rep; 2018 Sep; 8(1):14222. PubMed ID: 30242193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.