These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 27252637)

  • 1. Determining Optimal Feature-Combination for LDA Classification of Functional Near-Infrared Spectroscopy Signals in Brain-Computer Interface Application.
    Naseer N; Noori FM; Qureshi NK; Hong KS
    Front Hum Neurosci; 2016; 10():237. PubMed ID: 27252637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing classification accuracy of fNIRS-BCI using features acquired from vector-based phase analysis.
    Nazeer H; Naseer N; Khan RA; Noori FM; Qureshi NK; Khan US; Khan MJ
    J Neural Eng; 2020 Oct; 17(5):056025. PubMed ID: 33055382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subject-Specific feature selection for near infrared spectroscopy based brain-computer interfaces.
    Aydin EA
    Comput Methods Programs Biomed; 2020 Oct; 195():105535. PubMed ID: 32534382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of Different Classification Techniques for Two-Class Functional Near-Infrared Spectroscopy-Based Brain-Computer Interface.
    Naseer N; Qureshi NK; Noori FM; Hong KS
    Comput Intell Neurosci; 2016; 2016():5480760. PubMed ID: 27725827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal feature selection from fNIRS signals using genetic algorithms for BCI.
    Noori FM; Naseer N; Qureshi NK; Nazeer H; Khan RA
    Neurosci Lett; 2017 Apr; 647():61-66. PubMed ID: 28336339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection and classification of three-class initial dips from prefrontal cortex.
    Zafar A; Hong KS
    Biomed Opt Express; 2017 Jan; 8(1):367-383. PubMed ID: 28101424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Passive BCI based on drowsiness detection: an fNIRS study.
    Khan MJ; Hong KS
    Biomed Opt Express; 2015 Oct; 6(10):4063-78. PubMed ID: 26504654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing Classification Performance of Functional Near-Infrared Spectroscopy- Brain-Computer Interface Using Adaptive Estimation of General Linear Model Coefficients.
    Qureshi NK; Naseer N; Noori FM; Nazeer H; Khan RA; Saleem S
    Front Neurorobot; 2017; 11():33. PubMed ID: 28769781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applying antagonistic activation pattern to the single-trial classification of mental arithmetic.
    Liu S
    Heliyon; 2022 Oct; 8(10):e11102. PubMed ID: 36303917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Classification of functional near-infrared spectroscopy signals corresponding to the right- and left-wrist motor imagery for development of a brain-computer interface.
    Naseer N; Hong KS
    Neurosci Lett; 2013 Oct; 553():84-9. PubMed ID: 23973334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unleashing the potential of fNIRS with machine learning: classification of fine anatomical movements to empower future brain-computer interface.
    Khan H; Khadka R; Sultan MS; Yazidi A; Ombao H; Mirtaheri P
    Front Hum Neurosci; 2024; 18():1354143. PubMed ID: 38435744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LASSO Homotopy-Based Sparse Representation Classification for fNIRS-BCI.
    Gulraiz A; Naseer N; Nazeer H; Khan MJ; Khan RA; Shahbaz Khan U
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Classification of prefrontal and motor cortex signals for three-class fNIRS-BCI.
    Hong KS; Naseer N; Kim YH
    Neurosci Lett; 2015 Feb; 587():87-92. PubMed ID: 25529197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feature Extraction and Classification Methods for Hybrid fNIRS-EEG Brain-Computer Interfaces.
    Hong KS; Khan MJ; Hong MJ
    Front Hum Neurosci; 2018; 12():246. PubMed ID: 30002623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diagnosis of Mild Cognitive Impairment Using Cognitive Tasks: A Functional Near-Infrared Spectroscopy Study.
    Yoo SH; Woo SW; Shin MJ; Yoon JA; Shin YI; Hong KS
    Curr Alzheimer Res; 2020; 17(13):1145-1160. PubMed ID: 33583382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An effective classification framework for brain-computer interface system design based on combining of fNIRS and EEG signals.
    Alhudhaif A
    PeerJ Comput Sci; 2021; 7():e537. PubMed ID: 34013040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. fNIRS-based brain-computer interfaces: a review.
    Naseer N; Hong KS
    Front Hum Neurosci; 2015; 9():3. PubMed ID: 25674060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. fNIRS Evidence for Distinguishing Patients With Major Depression and Healthy Controls.
    Chao J; Zheng S; Wu H; Wang D; Zhang X; Peng H; Hu B
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2211-2221. PubMed ID: 34554917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional near-infrared spectroscopy based discrimination of mental counting and no-control state for development of a brain-computer interface.
    Naseer N; Hong KS
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1780-3. PubMed ID: 24110053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decoding four different sound-categories in the auditory cortex using functional near-infrared spectroscopy.
    Hong KS; Santosa H
    Hear Res; 2016 Mar; 333():157-166. PubMed ID: 26828741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.