These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 27252643)

  • 1. Synergy of AMPA and NMDA Receptor Currents in Dopaminergic Neurons: A Modeling Study.
    Zakharov D; Lapish C; Gutkin B; Kuznetsov A
    Front Comput Neurosci; 2016; 10():48. PubMed ID: 27252643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of NMDA receptor and pacemaking mechanisms in the midbrain dopaminergic neuron.
    Ha J; Kuznetsov A
    PLoS One; 2013; 8(7):e69984. PubMed ID: 23894569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dopamine Neurons Change the Type of Excitability in Response to Stimuli.
    Morozova EO; Zakharov D; Gutkin BS; Lapish CC; Kuznetsov A
    PLoS Comput Biol; 2016 Dec; 12(12):e1005233. PubMed ID: 27930673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modifications of the input currents on VTA dopamine neurons following acute versus chronic cocaine exposure.
    Michaeli A; Matzner H; Poltyrev T; Yaka R
    Neuropharmacology; 2012 Mar; 62(4):1834-40. PubMed ID: 22197515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developmental depression of glutamate neurotransmission by chronic low-level activation of NMDA receptors.
    Shi J; Aamodt SM; Townsend M; Constantine-Paton M
    J Neurosci; 2001 Aug; 21(16):6233-44. PubMed ID: 11487646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutamatergic synaptic currents of nigral dopaminergic neurons follow a postnatal developmental sequence.
    Pearlstein E; Gouty-Colomer LA; Michel FJ; Cloarec R; Hammond C
    Front Cell Neurosci; 2015; 9():210. PubMed ID: 26074777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glutamate currents in morphologically identified human dentate granule cells in temporal lobe epilepsy.
    Isokawa M; Levesque M; Fried I; Engel J
    J Neurophysiol; 1997 Jun; 77(6):3355-69. PubMed ID: 9212280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer simulations of NMDA and non-NMDA receptor-mediated synaptic drive: sensory and supraspinal modulation of neurons and small networks.
    Tråvén HG; Brodin L; Lansner A; Ekeberg O; Wallén P; Grillner S
    J Neurophysiol; 1993 Aug; 70(2):695-709. PubMed ID: 8105036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prolonged synaptic currents and glutamate spillover at the parallel fiber to stellate cell synapse.
    Carter AG; Regehr WG
    J Neurosci; 2000 Jun; 20(12):4423-34. PubMed ID: 10844011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A modeling study suggests complementary roles for GABAA and NMDA receptors and the SK channel in regulating the firing pattern in midbrain dopamine neurons.
    Komendantov AO; Komendantova OG; Johnson SW; Canavier CC
    J Neurophysiol; 2004 Jan; 91(1):346-57. PubMed ID: 13679411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The NMDA-to-AMPA ratio at synapses onto layer 2/3 pyramidal neurons is conserved across prefrontal and visual cortices.
    Myme CI; Sugino K; Turrigiano GG; Nelson SB
    J Neurophysiol; 2003 Aug; 90(2):771-9. PubMed ID: 12672778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transient high-frequency firing in a coupled-oscillator model of the mesencephalic dopaminergic neuron.
    Kuznetsov AS; Kopell NJ; Wilson CJ
    J Neurophysiol; 2006 Feb; 95(2):932-47. PubMed ID: 16207783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast interaction between AMPA and NMDA receptors by intracellular calcium.
    Rozov A; Burnashev N
    Cell Calcium; 2016 Dec; 60(6):407-414. PubMed ID: 27707506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for N-methyl-D-aspartate and AMPA subtypes of the glutamate receptor on substantia nigra dopamine neurons: possible preferential role for N-methyl-D-aspartate receptors.
    Christoffersen CL; Meltzer LT
    Neuroscience; 1995 Jul; 67(2):373-81. PubMed ID: 7545793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of excitatory amino acid receptor subtypes on the electrophysiological activity of dopaminergic and nondopaminergic neurons in rat substantia nigra.
    Zhang J; Chiodo LA; Freeman AS
    J Pharmacol Exp Ther; 1994 Apr; 269(1):313-21. PubMed ID: 7513359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-NMDA and NMDA receptor agonists induced excitation and their differential effect in activation of superior salivatory nucleus neurons in anaesthetized rats.
    Ishizuka K; Oskutyte D; Satoh Y; Murakami T
    Auton Neurosci; 2008 Feb; 138(1-2):41-9. PubMed ID: 17988955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of nitrous oxide on excitatory and inhibitory synaptic transmission in hippocampal cultures.
    Mennerick S; Jevtovic-Todorovic V; Todorovic SM; Shen W; Olney JW; Zorumski CF
    J Neurosci; 1998 Dec; 18(23):9716-26. PubMed ID: 9822732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of selective glutamate receptor antagonists on synchronized firing bursts in layer III of rat visual cortex.
    Langdon RB; Sur M
    Brain Res; 1992 Dec; 599(2):283-96. PubMed ID: 1363285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synaptic activation of dendritic AMPA and NMDA receptors generates transient high-frequency firing in substantia nigra dopamine neurons in vitro.
    Blythe SN; Atherton JF; Bevan MD
    J Neurophysiol; 2007 Apr; 97(4):2837-50. PubMed ID: 17251363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AMPA and NMDA receptor regulation of firing activity in 5-HT neurons of the dorsal and median raphe nuclei.
    Gartside SE; Cole AJ; Williams AP; McQuade R; Judge SJ
    Eur J Neurosci; 2007 May; 25(10):3001-8. PubMed ID: 17509083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.