These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 27252732)

  • 41. Four TFL1/CEN-like genes on distinct linkage groups show different expression patterns to regulate vegetative and reproductive development in apple (Malus x domestica Borkh.).
    Mimida N; Kotoda N; Ueda T; Igarashi M; Hatsuyama Y; Iwanami H; Moriya S; Abe K
    Plant Cell Physiol; 2009 Feb; 50(2):394-412. PubMed ID: 19168455
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dicot-specific ATG8-interacting ATI3 proteins interact with conserved UBAC2 proteins and play critical roles in plant stress responses.
    Zhou J; Wang Z; Wang X; Li X; Zhang Z; Fan B; Zhu C; Chen Z
    Autophagy; 2018; 14(3):487-504. PubMed ID: 29313416
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Genome-wide identification, evolution, and expression analysis of GATA transcription factors in apple (Malus×domestica Borkh.).
    Chen H; Shao H; Li K; Zhang D; Fan S; Li Y; Han M
    Gene; 2017 Sep; 627():460-472. PubMed ID: 28669931
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Expression of Malus xiaojinensis IRT1 (MxIRT1) protein in transgenic yeast cells leads to degradation through autophagy in the presence of excessive iron.
    Li S; Zhang X; Zhang XY; Xiao W; Berry JO; Li P; Jin S; Tan S; Zhang P; Zhao WZ; Yin LP
    Yeast; 2015 Jul; 32(7):499-517. PubMed ID: 25871543
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Autophagy in development and stress responses of plants.
    Bassham DC; Laporte M; Marty F; Moriyasu Y; Ohsumi Y; Olsen LJ; Yoshimoto K
    Autophagy; 2006; 2(1):2-11. PubMed ID: 16874030
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Delay in leaf senescence of Malus hupehensis by long-term melatonin application is associated with its regulation of metabolic status and protein degradation.
    Wang P; Sun X; Chang C; Feng F; Liang D; Cheng L; Ma F
    J Pineal Res; 2013 Nov; 55(4):424-34. PubMed ID: 24103092
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Genome-wide identification of SERK genes in apple and analyses of their role in stress responses and growth.
    Zheng L; Ma J; Mao J; Fan S; Zhang D; Zhao C; An N; Han M
    BMC Genomics; 2018 Dec; 19(1):962. PubMed ID: 30587123
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biological functions of the autophagy-related proteins Atg4 and Atg8 in Cryptococcus neoformans.
    Roberto TN; Lima RF; Pascon RC; Idnurm A; Vallim MA
    PLoS One; 2020; 15(4):e0230981. PubMed ID: 32251488
    [TBL] [Abstract][Full Text] [Related]  

  • 49. AtHIPM, an ortholog of the apple HrpN-interacting protein, is a negative regulator of plant growth and mediates the growth-enhancing effect of HrpN in Arabidopsis.
    Oh CS; Beer SV
    Plant Physiol; 2007 Oct; 145(2):426-36. PubMed ID: 17704235
    [TBL] [Abstract][Full Text] [Related]  

  • 50. ATG8 lipidation and ATG8-mediated autophagy in Arabidopsis require ATG12 expressed from the differentially controlled ATG12A AND ATG12B loci.
    Chung T; Phillips AR; Vierstra RD
    Plant J; 2010 May; 62(3):483-93. PubMed ID: 20136727
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The roles of autophagy in development and stress responses in Arabidopsis thaliana.
    Lv X; Pu X; Qin G; Zhu T; Lin H
    Apoptosis; 2014 Jun; 19(6):905-21. PubMed ID: 24682700
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Genome-Wide Identification of Sultr Genes in
    Xun M; Song J; Shi J; Li J; Shi Y; Yan J; Zhang W; Yang H
    Front Plant Sci; 2021; 12():748242. PubMed ID: 34707631
    [TBL] [Abstract][Full Text] [Related]  

  • 53.
    Huang W; Ma D; Hao X; Li J; Xia L; Zhang E; Wang P; Wang M; Guo F; Wang Y; Ni D; Zhao H
    Front Plant Sci; 2022; 13():880095. PubMed ID: 35620698
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Apple FLOWERING LOCUS T proteins interact with transcription factors implicated in cell growth and organ development.
    Mimida N; Kidou S; Iwanami H; Moriya S; Abe K; Voogd C; Varkonyi-Gasic E; Kotoda N
    Tree Physiol; 2011 May; 31(5):555-66. PubMed ID: 21571725
    [TBL] [Abstract][Full Text] [Related]  

  • 55. ATG5-knockout mutants of Physcomitrella provide a platform for analyzing the involvement of autophagy in senescence processes in plant cells.
    Mukae K; Inoue Y; Moriyasu Y
    Plant Signal Behav; 2015; 10(11):e1086859. PubMed ID: 26368055
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The autophagy-associated Atg8 gene family operates both under favourable growth conditions and under starvation stresses in Arabidopsis plants.
    Sláviková S; Shy G; Yao Y; Glozman R; Levanony H; Pietrokovski S; Elazar Z; Galili G
    J Exp Bot; 2005 Nov; 56(421):2839-49. PubMed ID: 16157655
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Gene-Wide Analysis of Aquaporin Gene Family in
    Liu H; Yang L; Xin M; Ma F; Liu J
    Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31362376
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Starvation-induced expression of autophagy-related genes in Arabidopsis.
    Rose TL; Bonneau L; Der C; Marty-Mazars D; Marty F
    Biol Cell; 2006 Jan; 98(1):53-67. PubMed ID: 16354162
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Methods for analysis of autophagy in plants.
    Bassham DC
    Methods; 2015 Mar; 75():181-8. PubMed ID: 25239736
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Analysis of Plant Autophagy.
    Chen L; Li F; Xiao S
    Methods Mol Biol; 2017; 1662():267-280. PubMed ID: 28861836
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.