BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 27253062)

  • 1. Testing the Münch hypothesis of long distance phloem transport in plants.
    Knoblauch M; Knoblauch J; Mullendore DL; Savage JA; Babst BA; Beecher SD; Dodgen AC; Jensen KH; Holbrook NM
    Elife; 2016 Jun; 5():. PubMed ID: 27253062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phloem transport: a review of mechanisms and controls.
    De Schepper V; De Swaef T; Bauweraerts I; Steppe K
    J Exp Bot; 2013 Nov; 64(16):4839-50. PubMed ID: 24106290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An evaluation of the Münch hypothesis for phloem transport in soybean.
    Fisher DB
    Planta; 1978 Jan; 139(1):25-8. PubMed ID: 24414101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How Münch's adaptation of Pfeffer's circulating water flow became the pressure-flow theory, and the resulting problems - A historical perspective.
    Peters WS; Knoblauch M
    J Plant Physiol; 2022 May; 272():153672. PubMed ID: 35366573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Under pressure.
    Hammes UZ
    Elife; 2016 Jul; 5():. PubMed ID: 27417294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct measurements of sieve element hydrostatic pressure reveal strong regulation after pathway blockage.
    Gould N; Minchin PEH; Thorpe MR
    Funct Plant Biol; 2004 Nov; 31(10):987-993. PubMed ID: 32688967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The gelatinous extracellular matrix facilitates transport studies in kelp: visualization of pressure-induced flow reversal across sieve plates.
    Knoblauch J; Peters WS; Knoblauch M
    Ann Bot; 2016 Apr; 117(4):599-606. PubMed ID: 26929203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structure of the phloem--still more questions than answers.
    Knoblauch M; Oparka K
    Plant J; 2012 Apr; 70(1):147-56. PubMed ID: 22449049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Universality of phloem transport in seed plants.
    Jensen KH; Liesche J; Bohr T; Schulz A
    Plant Cell Environ; 2012 Jun; 35(6):1065-76. PubMed ID: 22150791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phloem: the long and the short of it.
    Thompson MV
    Trends Plant Sci; 2006 Jan; 11(1):26-32. PubMed ID: 16356759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of Osmotic Gradients in Soybean Sieve Tubes by Quantitative Autoradiography: Qualified Support for the MUnch Hypothesis.
    Housley TL; Fisher DB
    Plant Physiol; 1977 Apr; 59(4):701-6. PubMed ID: 16659921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phloem hydrostatic pressure relates to solute loading rate: a direct test of the Münch hypothesis.
    Gould N; Thorpe MR; Koroleva O; Minchin PEH
    Funct Plant Biol; 2005 Nov; 32(11):1019-1026. PubMed ID: 32689197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does Don Fisher's high-pressure manifold model account for phloem transport and resource partitioning?
    Patrick JW
    Front Plant Sci; 2013; 4():184. PubMed ID: 23802003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of a single-solute non-steady-state phloem model to the study of long-distance assimilate transport.
    Thompson MV; Holbrook NM
    J Theor Biol; 2003 Feb; 220(4):419-55. PubMed ID: 12623280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phloem ultrastructure and pressure flow: Sieve-Element-Occlusion-Related agglomerations do not affect translocation.
    Froelich DR; Mullendore DL; Jensen KH; Ross-Elliott TJ; Anstead JA; Thompson GA; Pélissier HC; Knoblauch M
    Plant Cell; 2011 Dec; 23(12):4428-45. PubMed ID: 22198148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational models evaluating the impact of sieve plates and radial water exchange on phloem pressure gradients.
    Stanfield RC; Schulte PJ; Randolph KE; Hacke UG
    Plant Cell Environ; 2019 Feb; 42(2):466-479. PubMed ID: 30074610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diurnal dynamics of phloem loading: theoretical consequences for transport efficiency and flow characteristics.
    Sellier D; Mammeri Y
    Tree Physiol; 2019 Feb; 39(2):300-311. PubMed ID: 30753675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linking phloem function to structure: analysis with a coupled xylem-phloem transport model.
    Hölttä T; Mencuccini M; Nikinmaa E
    J Theor Biol; 2009 Jul; 259(2):325-37. PubMed ID: 19361530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phloem transport in gymnosperms: a question of pressure and resistance.
    Liesche J; Schulz A
    Curr Opin Plant Biol; 2018 Jun; 43():36-42. PubMed ID: 29304388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analytic solutions and universal properties of sugar loading models in Münch phloem flow.
    Jensen KH; Berg-Sørensen K; Friis SM; Bohr T
    J Theor Biol; 2012 Jul; 304():286-96. PubMed ID: 22774225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.