These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 27253477)
21. Improving anaerobic digestion of a cellulosic waste via routine bioaugmentation with cellulolytic microorganisms. Martin-Ryals A; Schideman L; Li P; Wilkinson H; Wagner R Bioresour Technol; 2015; 189():62-70. PubMed ID: 25864032 [TBL] [Abstract][Full Text] [Related]
22. The thermophilic (55°C) microaerobic pretreatment of corn straw for anaerobic digestion. Fu SF; Wang F; Yuan XZ; Yang ZM; Luo SJ; Wang CS; Guo RB Bioresour Technol; 2015 Jan; 175():203-8. PubMed ID: 25459823 [TBL] [Abstract][Full Text] [Related]
23. Bioaugmentation protocols involving Methanobrevibacter thaueri and Pecoramyces ruminantium for investigating lignocellulose degradation and methane production from alfalfa stalks. Li Y; Guo Z; Liu X; Xu L; Zhu W; Cheng Y; Longland AC; Theodorou MK Bioresour Technol; 2024 Sep; 408():131172. PubMed ID: 39079572 [TBL] [Abstract][Full Text] [Related]
24. Laboratory-scale bioaugmentation relieves acetate accumulation and stimulates methane production in stalled anaerobic digesters. Town JR; Dumonceaux TJ Appl Microbiol Biotechnol; 2016 Jan; 100(2):1009-17. PubMed ID: 26481626 [TBL] [Abstract][Full Text] [Related]
25. Mesophilic-hydrothermal-thermophilic (M-H-T) digestion of green corn straw. Li D; Wang Q; Li J; Li Z; Yuan Y; Yan Z; Mei Z; Liu X Bioresour Technol; 2016 Feb; 202():25-32. PubMed ID: 26700755 [TBL] [Abstract][Full Text] [Related]
26. Taxonomic and enzymatic basis of the cellulolytic microbial consortium KKU-MC1 and its application in enhancing biomethane production. Wongfaed N; O-Thong S; Sittijunda S; Reungsang A Sci Rep; 2023 Feb; 13(1):2968. PubMed ID: 36804594 [TBL] [Abstract][Full Text] [Related]
27. Construction of novel microbial consortia CS-5 and BC-4 valued for the degradation of catalpa sawdust and chlorophenols simultaneously with enhancing methane production. Ali SS; Mustafa AM; Kornaros M; Manni A; Sun J; Khalil MA Bioresour Technol; 2020 Apr; 301():122720. PubMed ID: 31945685 [TBL] [Abstract][Full Text] [Related]
28. Material and microbial changes during corn stalk silage and their effects on methane fermentation. Zhao Y; Yu J; Liu J; Yang H; Gao L; Yuan X; Cui ZJ; Wang X Bioresour Technol; 2016 Dec; 222():89-99. PubMed ID: 27716566 [TBL] [Abstract][Full Text] [Related]
29. Comparison of the mesophilic and thermophilic anaerobic digestion of spent cow bedding in leach-bed reactors. Riggio S; Hernandéz-Shek MA; Torrijos M; Vives G; Esposito G; van Hullebusch ED; Steyer JP; Escudié R Bioresour Technol; 2017 Jun; 234():466-471. PubMed ID: 28336219 [TBL] [Abstract][Full Text] [Related]
30. Enhanced methane production via repeated batch bioaugmentation pattern of enriched microbial consortia. Yang Z; Guo R; Xu X; Wang L; Dai M Bioresour Technol; 2016 Sep; 216():471-7. PubMed ID: 27262722 [TBL] [Abstract][Full Text] [Related]
31. Enhancing anaerobic digestion of lignocellulosic materials in excess sludge by bioaugmentation and pre-treatment. Hu Y; Hao X; Wang J; Cao Y Waste Manag; 2016 Mar; 49():55-63. PubMed ID: 26712660 [TBL] [Abstract][Full Text] [Related]
32. Degradation of corn stalk by the composite microbial system of MC1. Guo P; Wang X; Zhu W; Yang H; Cheng X; Cui Z J Environ Sci (China); 2008; 20(1):109-14. PubMed ID: 18572532 [TBL] [Abstract][Full Text] [Related]
33. Characterization of an Anaerobic, Thermophilic, Alkaliphilic, High Lignocellulosic Biomass-Degrading Bacterial Community, ISHI-3, Isolated from Biocompost. Shikata A; Sermsathanaswadi J; Thianheng P; Baramee S; Tachaapaikoon C; Waeonukul R; Pason P; Ratanakhanokchai K; Kosugi A Enzyme Microb Technol; 2018 Nov; 118():66-75. PubMed ID: 30143202 [TBL] [Abstract][Full Text] [Related]
34. Bioaugmentation with an anaerobic fungus in a two-stage process for biohydrogen and biogas production using corn silage and cattail. Nkemka VN; Gilroyed B; Yanke J; Gruninger R; Vedres D; McAllister T; Hao X Bioresour Technol; 2015 Jun; 185():79-88. PubMed ID: 25755016 [TBL] [Abstract][Full Text] [Related]
35. Bioaugmentation strategy for enhancing anaerobic digestion of high C/N ratio feedstock with methanogenic enrichment culture. Li Y; Li L; Sun Y; Yuan Z Bioresour Technol; 2018 Aug; 261():188-195. PubMed ID: 29660660 [TBL] [Abstract][Full Text] [Related]
37. New combination of xylanolytic bacteria isolated from the lignocellulose degradation microbial consortium XDC-2 with enhanced xylanase activity. Zhang D; Wang Y; Zheng D; Guo P; Cheng W; Cui Z Bioresour Technol; 2016 Dec; 221():686-690. PubMed ID: 27671341 [TBL] [Abstract][Full Text] [Related]
38. Biogas production from co-digestion of corn stover and chicken manure under anaerobic wet, hemi-solid, and solid state conditions. Li Y; Zhang R; Chen C; Liu G; He Y; Liu X Bioresour Technol; 2013 Dec; 149():406-12. PubMed ID: 24135565 [TBL] [Abstract][Full Text] [Related]
39. Effects of microbial and non-microbial factors of liquid anaerobic digestion effluent as inoculum on solid-state anaerobic digestion of corn stover. Shi J; Xu F; Wang Z; Stiverson JA; Yu Z; Li Y Bioresour Technol; 2014 Apr; 157():188-96. PubMed ID: 24556372 [TBL] [Abstract][Full Text] [Related]
40. Reactor performance and microbial community dynamics during solid-state anaerobic digestion of corn stover at mesophilic and thermophilic conditions. Shi J; Wang Z; Stiverson JA; Yu Z; Li Y Bioresour Technol; 2013 May; 136():574-81. PubMed ID: 23567733 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]