These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 27253478)
1. Valorization of Rhizoclonium sp. algae via pyrolysis and catalytic pyrolysis. Casoni AI; Zunino J; Piccolo MC; Volpe MA Bioresour Technol; 2016 Sep; 216():302-7. PubMed ID: 27253478 [TBL] [Abstract][Full Text] [Related]
2. Catalytic pyrolysis of green algae for hydrocarbon production using H+ZSM-5 catalyst. Thangalazhy-Gopakumar S; Adhikari S; Chattanathan SA; Gupta RB Bioresour Technol; 2012 Aug; 118():150-7. PubMed ID: 22705518 [TBL] [Abstract][Full Text] [Related]
3. Enhancement of hydrocarbons and phenols in catalytic pyrolysis bio-oil by employing aluminum hydroxide nanoparticle based spent adsorbent derived catalysts. Gupta S; Lanjewar R; Mondal P Chemosphere; 2022 Jan; 287(Pt 3):132220. PubMed ID: 34543895 [TBL] [Abstract][Full Text] [Related]
4. Production of phenol-rich bio-oil during catalytic fixed-bed and microwave pyrolysis of palm kernel shell. Omoriyekomwan JE; Tahmasebi A; Yu J Bioresour Technol; 2016 May; 207():188-96. PubMed ID: 26890793 [TBL] [Abstract][Full Text] [Related]
5. Essential Quality Attributes of Tangible Bio-Oils from Catalytic Pyrolysis of Lignocellulosic Biomass. Zhang C; Zhang ZC Chem Rec; 2019 Sep; 19(9):2044-2057. PubMed ID: 31483089 [TBL] [Abstract][Full Text] [Related]
6. Catalytic pyrolysis of lignocellulosic biomass for bio-oil production: A review. Wang Y; Akbarzadeh A; Chong L; Du J; Tahir N; Awasthi MK Chemosphere; 2022 Jun; 297():134181. PubMed ID: 35248592 [TBL] [Abstract][Full Text] [Related]
7. Catalytic co-pyrolysis of red cedar with methane to produce upgraded bio-oil. Tshikesho RS; Kumar A; Huhnke RL; Apblett A Bioresour Technol; 2019 Aug; 285():121299. PubMed ID: 31003206 [TBL] [Abstract][Full Text] [Related]
8. Effect of oxide catalysts on the properties of bio-oil from in-situ catalytic pyrolysis of palm empty fruit bunch fiber. Chong YY; Thangalazhy-Gopakumar S; Ng HK; Lee LY; Gan S J Environ Manage; 2019 Oct; 247():38-45. PubMed ID: 31229784 [TBL] [Abstract][Full Text] [Related]
9. Comparative study of pyrolysis of algal biomass from natural lake blooms with lignocellulosic biomass. Maddi B; Viamajala S; Varanasi S Bioresour Technol; 2011 Dec; 102(23):11018-26. PubMed ID: 21983407 [TBL] [Abstract][Full Text] [Related]
10. Bio-oil production via catalytic pyrolysis of Anchusa azurea: Effects of operating conditions on product yields and chromatographic characterization. Aysu T; Durak H; Güner S; Bengü AŞ; Esim N Bioresour Technol; 2016 Apr; 205():7-14. PubMed ID: 26800388 [TBL] [Abstract][Full Text] [Related]
11. Nannochloropsis algae pyrolysis with ceria-based catalysts for production of high-quality bio-oils. Aysu T; Sanna A Bioresour Technol; 2015 Oct; 194():108-16. PubMed ID: 26188553 [TBL] [Abstract][Full Text] [Related]
13. Microwave-assisted catalytic pyrolysis of lignocellulosic biomass for production of phenolic-rich bio-oil. Mamaeva A; Tahmasebi A; Tian L; Yu J Bioresour Technol; 2016 Jul; 211():382-9. PubMed ID: 27030958 [TBL] [Abstract][Full Text] [Related]
14. Catalytic pyrolysis of ulva lactuca macroalgae: Effects of mono and bimetallic catalysts and reaction parameters on bio-oil up-gradation. Verma R; Verma SK; Verma V; Verma S; Vaishnav Y; Jena V; Kumar A; Rakesh KP Bioresour Technol; 2021 Mar; 324():124594. PubMed ID: 33453518 [TBL] [Abstract][Full Text] [Related]
15. Utilisation of poultry industry wastes for liquid biofuel production via thermal and catalytic fast pyrolysis. Kantarli IC; Stefanidis SD; Kalogiannis KG; Lappas AA Waste Manag Res; 2019 Feb; 37(2):157-167. PubMed ID: 30249165 [TBL] [Abstract][Full Text] [Related]
16. A review of catalytic microwave pyrolysis of lignocellulosic biomass for value-added fuel and chemicals. Morgan HM; Bu Q; Liang J; Liu Y; Mao H; Shi A; Lei H; Ruan R Bioresour Technol; 2017 Apr; 230():112-121. PubMed ID: 28167357 [TBL] [Abstract][Full Text] [Related]
17. Catalytic gasification of oil-extracted residue biomass of Botryococcus braunii. Watanabe H; Li D; Nakagawa Y; Tomishige K; Watanabe MM Bioresour Technol; 2015 Sep; 191():452-9. PubMed ID: 25817421 [TBL] [Abstract][Full Text] [Related]
18. Stabilization of acid-rich bio-oil by catalytic mild hydrotreating. Choi W; Jo H; Choi JW; Suh DJ; Lee H; Kim C; Kim KH; Lee KY; Ha JM Environ Pollut; 2021 Mar; 272():116180. PubMed ID: 33445152 [TBL] [Abstract][Full Text] [Related]
19. A Comparative study of microwave-induced pyrolysis of lignocellulosic and algal biomass. Wang N; Tahmasebi A; Yu J; Xu J; Huang F; Mamaeva A Bioresour Technol; 2015 Aug; 190():89-96. PubMed ID: 25935388 [TBL] [Abstract][Full Text] [Related]
20. Bio-oil upgrading with catalytic pyrolysis of biomass using Copper/zeolite-Nickel/zeolite and Copper-Nickel/zeolite catalysts. Kumar R; Strezov V; Lovell E; Kan T; Weldekidan H; He J; Dastjerdi B; Scott J Bioresour Technol; 2019 May; 279():404-409. PubMed ID: 30712994 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]