These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 27253618)

  • 1. Finite element analysis of left ventricle during cardiac cycles in viscoelasticity.
    Shen JJ; Xu FY; Yang WA
    Comput Biol Med; 2016 Aug; 75():63-73. PubMed ID: 27253618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A finite element model of the human left ventricular systole.
    Dorri F; Niederer PF; Lunkenheimer PP
    Comput Methods Biomech Biomed Engin; 2006 Oct; 9(5):319-41. PubMed ID: 17132618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Residual stress produced by ventricular volume reduction surgery has little effect on ventricular function and mechanics: a finite element model study.
    Guccione JM; Moonly SM; Wallace AW; Ratcliffe MB
    J Thorac Cardiovasc Surg; 2001 Sep; 122(3):592-9. PubMed ID: 11547315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An orthotropic viscoelastic model for the passive myocardium: continuum basis and numerical treatment.
    Gültekin O; Sommer G; Holzapfel GA
    Comput Methods Biomech Biomed Engin; 2016 Nov; 19(15):1647-64. PubMed ID: 27146848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural finite deformation model of the left ventricle during diastole and systole.
    Nevo E; Lanir Y
    J Biomech Eng; 1989 Nov; 111(4):342-9. PubMed ID: 2486374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of left-ventricular shape on end-diastolic fiber stress and strain.
    Choi HF; D'hooge J; Rademakers FE; Claus P
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2887-90. PubMed ID: 19964050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Force-dependent recruitment from myosin OFF-state increases end-systolic pressure-volume relationship in left ventricle.
    Mann CK; Lee LC; Campbell KS; Wenk JF
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2683-2692. PubMed ID: 32346808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Some factors that influence mechanical behavior of the left ventricle of the human heart in late systole: a feasibility study using finite element analysis.
    Yettram AL; Beecham MC; Gibson DG
    Heart Vessels; 1998; 13(6):290-301. PubMed ID: 10651171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Importance of material parameters and strain energy function on the wall stresses in the left ventricle.
    Behdadfar S; Navarro L; Sundnes J; Maleckar MM; Avril S
    Comput Methods Biomech Biomed Engin; 2017 Aug; 20(11):1223-1232. PubMed ID: 28675049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptation of a rabbit myocardium material model for use in a canine left ventricle simulation study.
    Doyle MG; Tavoularis S; Bourgault Y
    J Biomech Eng; 2010 Apr; 132(4):041006. PubMed ID: 20387969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A two-phase finite element model of the diastolic left ventricle.
    Huyghe JM; van Campen DH; Arts T; Heethaar RM
    J Biomech; 1991; 24(7):527-38. PubMed ID: 1880137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new active contraction model for the myocardium using a modified hill model.
    Guan D; Gao H; Cai L; Luo X
    Comput Biol Med; 2022 Jun; 145():105417. PubMed ID: 35405401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A finite element model of myocardial infarction using a composite material approach.
    Haddad SMH; Samani A
    Comput Methods Biomech Biomed Engin; 2018 Jan; 21(1):33-46. PubMed ID: 29252005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An anatomical heart model with applications to myocardial activation and ventricular mechanics.
    Hunter PJ; Nielsen PM; Smaill BH; LeGrice IJ; Hunter IW
    Crit Rev Biomed Eng; 1992; 20(5-6):403-26. PubMed ID: 1486783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational models of heart pumping efficiencies based on contraction waves in spiral elastic bands.
    Grosberg A; Gharib M
    J Theor Biol; 2009 Apr; 257(3):359-70. PubMed ID: 19109980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unraveling changes in myocardial contractility during human fetal growth: a finite element analysis based on in vivo ultrasound measurements.
    Peña E; Tracqui P; Azancot A; Doblare M; Ohayon J
    Ann Biomed Eng; 2010 Aug; 38(8):2702-15. PubMed ID: 20309735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bi-ventricular finite element model of right ventricle overload in the healthy rat heart.
    Masithulela F
    Biomed Mater Eng; 2016 Nov; 27(5):507-525. PubMed ID: 27885998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite element modeling of hyper-viscoelasticity of peripheral nerve ultrastructures.
    Chang CT; Chen YH; Lin CC; Ju MS
    J Biomech; 2015 Jul; 48(10):1982-7. PubMed ID: 25912662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational model for early cardiac looping.
    Ramasubramanian A; Latacha KS; Benjamin JM; Voronov DA; Ravi A; Taber LA
    Ann Biomed Eng; 2006 Aug; 34(8):1655-69. PubMed ID: 16732433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mathematical modelling of active contraction in isolated cardiomyocytes.
    Ruiz-Baier R; Gizzi A; Rossi S; Cherubini C; Laadhari A; Filippi S; Quarteroni A
    Math Med Biol; 2014 Sep; 31(3):259-83. PubMed ID: 23760444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.