These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 27253618)

  • 21. Mechanisms of postsystolic thickening in ischemic myocardium: mathematical modelling and comparison with experimental ischemic substrates.
    Claus P; Weidemann F; Dommke C; Bito V; Heinzel FR; D'hooge J; Sipido KR; Sutherland GR; Bijnens B
    Ultrasound Med Biol; 2007 Dec; 33(12):1963-70. PubMed ID: 17673356
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling of mechanical dysfunction in regional stunned myocardium of the left ventricle.
    Drzewiecki G; Wang JJ; Li JK; Kedem J; Weiss H
    IEEE Trans Biomed Eng; 1996 Dec; 43(12):1151-63. PubMed ID: 9214834
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of electrical conductivity of myocardium on cardiac pumping efficacy: a computational study.
    Yuniarti AR; Lim KM
    Biomed Eng Online; 2017 Jan; 16(1):11. PubMed ID: 28086779
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cardiac function estimation from MRI using a heart model and data assimilation: advances and difficulties.
    Sermesant M; Moireau P; Camara O; Sainte-Marie J; Andriantsimiavona R; Cimrman R; Hill DL; Chapelle D; Razavi R
    Med Image Anal; 2006 Aug; 10(4):642-56. PubMed ID: 16765630
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The constitutive behaviour of passive heart muscle tissue: a quasi-linear viscoelastic formulation.
    Huyghe JM; van Campen DH; Arts T; Heethaar RM
    J Biomech; 1991; 24(9):841-9. PubMed ID: 1752868
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A three-dimensional finite element method for large elastic deformations of ventricular myocardium: II--Prolate spheroidal coordinates.
    Costa KD; Hunter PJ; Wayne JS; Waldman LK; Guccione JM; McCulloch AD
    J Biomech Eng; 1996 Nov; 118(4):464-72. PubMed ID: 8950649
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effects of cross-fiber deformation on axial fiber stress in myocardium.
    Zahalak GI; de Laborderie V; Guccione JM
    J Biomech Eng; 1999 Aug; 121(4):376-85. PubMed ID: 10464691
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A transmurally heterogeneous orthotropic activation model for ventricular contraction and its numerical validation.
    Barbarotta L; Rossi S; Dedè L; Quarteroni A
    Int J Numer Method Biomed Eng; 2018 Dec; 34(12):e3137. PubMed ID: 30070071
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of cardiac ventricular wall motion based on a three-dimensional electromechanical biventricular model.
    Xia L; Huo M; Wei Q; Liu F; Crozier S
    Phys Med Biol; 2005 Apr; 50(8):1901-17. PubMed ID: 15815103
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hyperelastic description of elastomechanic properties of the heart: a new material law and its application.
    Häfner J; Sachse FB; Sansour C; Seemann G; Dössel O
    Biomed Tech (Berl); 2002; 47 Suppl 1 Pt 2():770-3. PubMed ID: 12465299
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Active finite element analysis of skeletal muscle-tendon complex during isometric, shortening and lengthening contraction.
    Tsui CP; Tang CY; Leung CP; Cheng KW; Ng YF; Chow DH; Li CK
    Biomed Mater Eng; 2004; 14(3):271-9. PubMed ID: 15299239
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An integrated formulation of anisotropic force-calcium relations driving spatio-temporal contractions of cardiac myocytes.
    Tracqui P; Ohayon J
    Philos Trans A Math Phys Eng Sci; 2009 Dec; 367(1908):4887-905. PubMed ID: 19884185
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The poro-viscoelastic properties of trabecular bone: a micro computed tomography-based finite element study.
    Sandino C; McErlain DD; Schipilow J; Boyd SK
    J Mech Behav Biomed Mater; 2015 Apr; 44():1-9. PubMed ID: 25591049
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New developments in a strongly coupled cardiac electromechanical model.
    Nickerson D; Smith N; Hunter P
    Europace; 2005 Sep; 7 Suppl 2():118-27. PubMed ID: 16102509
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Probabilistic finite element analysis of a craniofacial finite element model.
    Berthaume MA; Dechow PC; Iriarte-Diaz J; Ross CF; Strait DS; Wang Q; Grosse IR
    J Theor Biol; 2012 May; 300():242-53. PubMed ID: 22306513
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative study of viscoelastic arterial wall models in nonlinear one-dimensional finite element simulations of blood flow.
    Raghu R; Vignon-Clementel IE; Figueroa CA; Taylor CA
    J Biomech Eng; 2011 Aug; 133(8):081003. PubMed ID: 21950896
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cardiac mechanoenergetics replicated by cross-bridge model.
    Vendelin M; Bovendeerd PH; Arts T; Engelbrecht J; van Campen DH
    Ann Biomed Eng; 2000 Jun; 28(6):629-40. PubMed ID: 10983709
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nonhomogeneous strain from sparse marker arrays for analysis of transmural myocardial mechanics.
    Kindberg K; Karlsson M; Ingels NB; Criscione JC
    J Biomech Eng; 2007 Aug; 129(4):603-10. PubMed ID: 17655482
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of ventricular volume reduction surgery in the dilated, poorly contractile left ventricle: a simple finite element analysis.
    Ratcliffe MB; Hong J; Salahieh A; Ruch S; Wallace AW
    J Thorac Cardiovasc Surg; 1998 Oct; 116(4):566-77. PubMed ID: 9766584
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A model of multicomponent cardiac fibre.
    Montevecchi FM; Pietrabissa R
    J Biomech; 1987; 20(4):365-70. PubMed ID: 3597453
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.