These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 27253756)

  • 1. Protein-protein structure prediction by scoring molecular dynamics trajectories of putative poses.
    Sarti E; Gladich I; Zamuner S; Correia BE; Laio A
    Proteins; 2016 Sep; 84(9):1312-20. PubMed ID: 27253756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Native fold and docking pose discrimination by the same residue-based scoring function.
    Sarti E; Granata D; Seno F; Trovato A; Laio A
    Proteins; 2015 Apr; 83(4):621-30. PubMed ID: 25619680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of MDockPP in CAPRI rounds 28-29 and 31-35 including the prediction of water-mediated interactions.
    Xu X; Qiu L; Yan C; Ma Z; Grinter SZ; Zou X
    Proteins; 2017 Mar; 85(3):424-434. PubMed ID: 27802576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CLUB-MARTINI: Selecting Favourable Interactions amongst Available Candidates, a Coarse-Grained Simulation Approach to Scoring Docking Decoys.
    Hou Q; Lensink MF; Heringa J; Feenstra KA
    PLoS One; 2016; 11(5):e0155251. PubMed ID: 27166787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasticity of the Binding Site of Renin: Optimized Selection of Protein Structures for Ensemble Docking.
    Strecker C; Meyer B
    J Chem Inf Model; 2018 May; 58(5):1121-1131. PubMed ID: 29683661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid Design of Knowledge-Based Scoring Potentials for Enrichment of Near-Native Geometries in Protein-Protein Docking.
    Sasse A; de Vries SJ; Schindler CE; de Beauchêne IC; Zacharias M
    PLoS One; 2017; 12(1):e0170625. PubMed ID: 28118389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein structure prediction using residue- and fragment-environment potentials in CASP11.
    Kim H; Kihara D
    Proteins; 2016 Sep; 84 Suppl 1(Suppl 1):105-17. PubMed ID: 26344195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving docking results via reranking of ensembles of ligand poses in multiple X-ray protein conformations with MM-GBSA.
    Greenidge PA; Kramer C; Mozziconacci JC; Sherman W
    J Chem Inf Model; 2014 Oct; 54(10):2697-717. PubMed ID: 25266271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implicit flexibility in protein docking: cross-docking and local refinement.
    Król M; Chaleil RA; Tournier AL; Bates PA
    Proteins; 2007 Dec; 69(4):750-7. PubMed ID: 17671977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear scoring functions for similarity-based ligand docking and binding affinity prediction.
    Brylinski M
    J Chem Inf Model; 2013 Nov; 53(11):3097-112. PubMed ID: 24171431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein structure refinement via molecular-dynamics simulations: What works and what does not?
    Feig M; Mirjalili V
    Proteins; 2016 Sep; 84 Suppl 1(Suppl 1):282-92. PubMed ID: 26234208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detecting the native ligand orientation by interfacial rigidity: SiteInterlock.
    Raschka S; Bemister-Buffington J; Kuhn LA
    Proteins; 2016 Dec; 84(12):1888-1901. PubMed ID: 27699847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel sampling strategies and a coarse-grained score function for docking homomers, flexible heteromers, and oligosaccharides using Rosetta in CAPRI rounds 37-45.
    Roy Burman SS; Nance ML; Jeliazkov JR; Labonte JW; Lubin JH; Biswas N; Gray JJ
    Proteins; 2020 Aug; 88(8):973-985. PubMed ID: 31742764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A systematic analysis of scoring functions in rigid-body protein docking: The delicate balance between the predictive rate improvement and the risk of overtraining.
    Barradas-Bautista D; Moal IH; Fernández-Recio J
    Proteins; 2017 Jul; 85(7):1287-1297. PubMed ID: 28342242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. iATTRACT: simultaneous global and local interface optimization for protein-protein docking refinement.
    Schindler CE; de Vries SJ; Zacharias M
    Proteins; 2015 Feb; 83(2):248-58. PubMed ID: 25402278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A combinatorial scoring function for protein-RNA docking.
    Zhang Z; Lu L; Zhang Y; Hua Li C; Wang CX; Zhang XY; Tan JJ
    Proteins; 2017 Apr; 85(4):741-752. PubMed ID: 28120375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GroScore: Accurate Scoring of Protein-Protein Binding Poses Using Explicit-Solvent Free-Energy Calculations.
    Perthold JW; Oostenbrink C
    J Chem Inf Model; 2019 Dec; 59(12):5074-5085. PubMed ID: 31790223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model Building of Antibody-Antigen Complex Structures Using GBSA Scores.
    Shimba N; Kamiya N; Nakamura H
    J Chem Inf Model; 2016 Oct; 56(10):2005-2012. PubMed ID: 27618247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural prediction of protein-RNA interaction by computational docking with propensity-based statistical potentials.
    Pérez-Cano L; Solernou A; Pons C; Fernández-Recio J
    Pac Symp Biocomput; 2010; ():293-301. PubMed ID: 19908381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Introducing a Clustering Step in a Consensus Approach for the Scoring of Protein-Protein Docking Models.
    Chermak E; De Donato R; Lensink MF; Petta A; Serra L; Scarano V; Cavallo L; Oliva R
    PLoS One; 2016; 11(11):e0166460. PubMed ID: 27846259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.