These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 27253913)

  • 1. Electronic structure and optical properties of graphene/stanene heterobilayer.
    Chen X; Meng R; Jiang J; Liang Q; Yang Q; Tan C; Sun X; Zhang S; Ren T
    Phys Chem Chem Phys; 2016 Jun; 18(24):16302-9. PubMed ID: 27253913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and electronic properties of two-dimensional stanene and graphene heterostructure.
    Wu L; Lu P; Bi J; Yang C; Song Y; Guan P; Wang S
    Nanoscale Res Lett; 2016 Dec; 11(1):525. PubMed ID: 27888499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stanene-hexagonal boron nitride heterobilayer: Structure and characterization of electronic property.
    Khan AI; Chakraborty T; Acharjee N; Subrina S
    Sci Rep; 2017 Nov; 7(1):16347. PubMed ID: 29180696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Band gap opening in stanene induced by patterned B-N doping.
    Garg P; Choudhuri I; Mahata A; Pathak B
    Phys Chem Chem Phys; 2017 Feb; 19(5):3660-3669. PubMed ID: 28094366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lateral and flexural phonon thermal transport in graphene and stanene bilayers.
    Hong Y; Zhu C; Ju M; Zhang J; Zeng XC
    Phys Chem Chem Phys; 2017 Mar; 19(9):6554-6562. PubMed ID: 28197566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions in stanene centred van der Waals trilayers structures of boron-nitride and graphene: effect of mirror symmetry on electronic interactions.
    Yun FF; Cortie DL; Wang XL
    J Phys Condens Matter; 2020 Jun; 32(26):265001. PubMed ID: 32143209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interlayer coupling and electric field tunable electronic properties and Schottky barrier in a graphene/bilayer-GaSe van der Waals heterostructure.
    Phuc HV; Hieu NN; Hoi BD; Nguyen CV
    Phys Chem Chem Phys; 2018 Jul; 20(26):17899-17908. PubMed ID: 29926024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal transport characterization of stanene/silicene heterobilayer and stanene bilayer nanostructures.
    Noshin M; Khan AI; Subrina S
    Nanotechnology; 2018 May; 29(18):185706. PubMed ID: 29438099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the chirality-dependent elastic properties and crack propagation behavior of single and bilayer stanene.
    Mahata A; Mukhopadhyay T
    Phys Chem Chem Phys; 2018 Sep; 20(35):22768-22782. PubMed ID: 30140834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stanene: Atomically Thick Free-standing Layer of 2D Hexagonal Tin.
    Saxena S; Chaudhary RP; Shukla S
    Sci Rep; 2016 Aug; 6():31073. PubMed ID: 27492139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuning the electronic structure in stanene/graphene bilayers using strain and gas adsorption.
    Yun FF; Cortie DL; Wang XL
    Phys Chem Chem Phys; 2017 Sep; 19(37):25574-25581. PubMed ID: 28902199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Staggering transport of edge states and symmetry analysis of electronic and optical properties of stanene.
    Cai Y; Zhang G; Zhang YW
    Nanoscale; 2020 Oct; 12(40):20890-20897. PubMed ID: 33048096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical properties of stanene.
    Chaudhary RP; Saxena S; Shukla S
    Nanotechnology; 2016 Dec; 27(49):495701. PubMed ID: 27823992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene/g-C3N4 bilayer: considerable band gap opening and effective band structure engineering.
    Li X; Dai Y; Ma Y; Han S; Huang B
    Phys Chem Chem Phys; 2014 Mar; 16(9):4230-5. PubMed ID: 24452306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene Monoxide Bilayer As a High-Performance on/off Switching Media for Nanoelectronics.
    Woo J; Yun KH; Chung YC
    ACS Appl Mater Interfaces; 2016 Apr; 8(16):10477-82. PubMed ID: 27046262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spin-Orbit Coupling Induced Gap in Graphene on Pt(111) with Intercalated Pb Monolayer.
    Klimovskikh II; Otrokov MM; Voroshnin VY; Sostina D; Petaccia L; Di Santo G; Thakur S; Chulkov EV; Shikin AM
    ACS Nano; 2017 Jan; 11(1):368-374. PubMed ID: 28005333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Band gap opening in methane intercalated graphene.
    Hargrove J; Shashikala HB; Guerrido L; Ravi N; Wang XQ
    Nanoscale; 2012 Aug; 4(15):4443-6. PubMed ID: 22695708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence of a graphene-like Sn-sheet on a Au(111) substrate: electronic structure and transport properties from first principles calculations.
    Nigam S; Gupta S; Banyai D; Pandey R; Majumder C
    Phys Chem Chem Phys; 2015 Mar; 17(10):6705-12. PubMed ID: 25683839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced magnetic properties and tunable Dirac point of graphene/Mn-doped monolayer MoS
    Tan Q; Wang Q; Liu Y; Liu C; Feng X; Yu D
    J Phys Condens Matter; 2018 Aug; 30(30):305304. PubMed ID: 29900880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epitaxial growth of ultraflat stanene with topological band inversion.
    Deng J; Xia B; Ma X; Chen H; Shan H; Zhai X; Li B; Zhao A; Xu Y; Duan W; Zhang SC; Wang B; Hou JG
    Nat Mater; 2018 Dec; 17(12):1081-1086. PubMed ID: 30397308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.