These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 27254079)

  • 1. Observation of Charge Generation and Transfer during CVD Growth of Carbon Nanotubes.
    Wang J; Liu P; Xia B; Wei H; Wei Y; Wu Y; Liu K; Zhang L; Wang J; Li Q; Fan S; Jiang K
    Nano Lett; 2016 Jul; 16(7):4102-9. PubMed ID: 27254079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of the Fe-Co interaction on the growth of multiwall carbon nanotubes.
    Li Z; Dervishi E; Xu Y; Ma X; Saini V; Biris AS; Little R; Biris AR; Lupu D
    J Chem Phys; 2008 Aug; 129(7):074712. PubMed ID: 19044797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Electrochemical Behavior of Carbon Fiber Microelectrodes Modified with Carbon Nanotubes Using a Two-Step Electroless Plating/Chemical Vapor Deposition Process.
    Lu L; Liang L; Teh KS; Xie Y; Wan Z; Tang Y
    Sensors (Basel); 2017 Mar; 17(4):. PubMed ID: 28358344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chiral-selective etching effects on carbon nanotube growth at edge carbon atoms.
    Kimura R; Hijikata Y; Eveleens CA; Page AJ; Irle S
    J Comput Chem; 2019 Jan; 40(2):375-380. PubMed ID: 30548651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Properties, synthesis, and growth mechanisms of carbon nanotubes with special focus on thermal chemical vapor deposition.
    Nessim GD
    Nanoscale; 2010 Aug; 2(8):1306-23. PubMed ID: 20820718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Templated and Catalytic Fabrication of N-Doped Hierarchical Porous Carbon-Carbon Nanotube Hybrids as Host for Lithium-Sulfur Batteries.
    Cai J; Wu C; Yang S; Zhu Y; Shen PK; Zhang K
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):33876-33886. PubMed ID: 28914524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Catalyst Pretreatment on Carbon Nanotube Synthesis from Methane Using Thin Stainless-Steel Foil as Catalyst by Chemical Vapor Deposition Method.
    Huynh TM; Nguyen S; Nguyen NTK; Nguyen HM; Do NUP; Nguyen DC; Nguyen LH; Nguyen CV
    Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33379133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchically structured 3D carbon nanotube electrodes for electrocatalytic applications.
    Wang P; Kulp K; Bron M
    Beilstein J Nanotechnol; 2019; 10():1475-1487. PubMed ID: 31431860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anomalous electrochemical dissolution and passivation of iron growth catalysts in carbon nanotubes.
    Lyon JL; Stevenson KJ
    Langmuir; 2007 Oct; 23(22):11311-8. PubMed ID: 17910488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localized growth of carbon nanotubes via lithographic fabrication of metallic deposits.
    Tu F; Drost M; Szenti I; Kiss J; Kónya Z; Marbach H
    Beilstein J Nanotechnol; 2017; 8():2592-2605. PubMed ID: 29259874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and growth mechanism of carbon nanotubes growing on carbon fiber surfaces with improved tensile strength.
    Qin J; Wang C; Wang Y; Lu R; Zheng L; Wang X; Yao Z; Gao Q; Wei H
    Nanotechnology; 2018 Sep; 29(39):395602. PubMed ID: 29972379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rational Modification of a Metallic Substrate for CVD Growth of Carbon Nanotubes.
    Li X; Baker-Fales M; Almkhelfe H; Gaede NR; Harris TS; Amama PB
    Sci Rep; 2018 Mar; 8(1):4349. PubMed ID: 29531239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TEM investigation on the growth mechanism of carbon nanotubes synthesized by hot-filament chemical vapor deposition.
    Chen X; Wang R; Xu J; Yu D
    Micron; 2004; 35(6):455-60. PubMed ID: 15120130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-Temperature Growth of Carbon Nanotubes Catalyzed by Sodium-Based Ingredients.
    Li R; Antunes EF; Kalfon-Cohen E; Kudo A; Acauan L; Yang WD; Wang C; Cui K; Liotta AH; Rajan AG; Gardener J; Bell DC; Strano MS; Liddle JA; Sharma R; Wardle BL
    Angew Chem Int Ed Engl; 2019 Jul; 58(27):9204-9209. PubMed ID: 31132208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of field emission of CNTs array by CO2-assisted chemical vapor deposition.
    Wu J; Ma Y; Tang D; Liu C; Huang Q; Huang Y; Cheng H; Chen D; Chen Y
    J Nanosci Nanotechnol; 2009 May; 9(5):3046-51. PubMed ID: 19452968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of Carbon Nanotube-Nanotubular Titania Composites by Catalyst-Free CVD Process: Insights into the Formation Mechanism and Photocatalytic Properties.
    Alsawat M; Altalhi T; Gulati K; Santos A; Losic D
    ACS Appl Mater Interfaces; 2015 Dec; 7(51):28361-8. PubMed ID: 26587676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Synergistic Effect of a Bimetallic Catalyst for the Synthesis of Carbon Nanotube Aerogels and their Predominant Chirality.
    Moon SY; Kim WS
    Chemistry; 2019 Oct; 25(59):13635-13639. PubMed ID: 31407390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon Nanotubes-Based Nanomaterials and Their Agricultural and Biotechnological Applications.
    Patel DK; Kim HB; Dutta SD; Ganguly K; Lim KT
    Materials (Basel); 2020 Apr; 13(7):. PubMed ID: 32260227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct wall number control of carbon nanotube forests from engineered iron catalysts.
    Chiang WH; Futaba DN; Yumura M; Hata K
    J Nanosci Nanotechnol; 2013 Apr; 13(4):2745-51. PubMed ID: 23763154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Carbon Nanotubes Growth Using Nickel/Ferrocene-Hybridized Catalyst.
    Lim YD; Avramchuck AV; Grapov D; Tan CW; Tay BK; Aditya S; Labunov V
    ACS Omega; 2017 Sep; 2(9):6063-6071. PubMed ID: 31457855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.