These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
315 related articles for article (PubMed ID: 27254250)
1. Boron Nitride Nanosheet-Veiled Gold Nanoparticles for Surface-Enhanced Raman Scattering. Cai Q; Mateti S; Watanabe K; Taniguchi T; Huang S; Chen Y; Li LH ACS Appl Mater Interfaces; 2016 Jun; 8(24):15630-6. PubMed ID: 27254250 [TBL] [Abstract][Full Text] [Related]
2. Boron Nitride Nanosheets Improve Sensitivity and Reusability of Surface-Enhanced Raman Spectroscopy. Cai Q; Mateti S; Yang W; Jones R; Watanabe K; Taniguchi T; Huang S; Chen Y; Li LH Angew Chem Int Ed Engl; 2016 Jul; 55(29):8405-9. PubMed ID: 27112577 [TBL] [Abstract][Full Text] [Related]
3. Boron nitride nanosheets as improved and reusable substrates for gold nanoparticles enabled surface enhanced Raman spectroscopy. Cai Q; Li LH; Yu Y; Liu Y; Huang S; Chen Y; Watanabe K; Taniguchi T Phys Chem Chem Phys; 2015 Mar; 17(12):7761-6. PubMed ID: 25714659 [TBL] [Abstract][Full Text] [Related]
4. Hexagonal Boron Nitride/Au Substrate for Manipulating Surface Plasmon and Enhancing Capability of Surface-Enhanced Raman Spectroscopy. Kim G; Kim M; Hyun C; Hong S; Ma KY; Shin HS; Lim H ACS Nano; 2016 Dec; 10(12):11156-11162. PubMed ID: 28024355 [TBL] [Abstract][Full Text] [Related]
5. Ultrasensitive and Stable Plasmonic Surface-Enhanced Raman Scattering Substrates Covered with Atomically Thin Monolayers: Effect of the Insulating Property. Kim NY; Leem YC; Hong SH; Park JH; Yim SY ACS Appl Mater Interfaces; 2019 Feb; 11(6):6363-6373. PubMed ID: 30663309 [TBL] [Abstract][Full Text] [Related]
6. Two-Dimensional Van der Waals Heterostructures for Synergistically Improved Surface-Enhanced Raman Spectroscopy. Cai Q; Gan W; Falin A; Watanabe K; Taniguchi T; Zhuang J; Hao W; Huang S; Tao T; Chen Y; Li LH ACS Appl Mater Interfaces; 2020 May; 12(19):21985-21991. PubMed ID: 32319287 [TBL] [Abstract][Full Text] [Related]
7. Surface plasmonic coupling of Au nanoparticle arrays with ultrathin hexagonal boron nitride nanosheets for Raman enhancement. Gao J; Zhan W; Xiao Y; Zhu X; Gao W; Yin H J Chem Phys; 2023 Jun; 158(21):. PubMed ID: 37260009 [TBL] [Abstract][Full Text] [Related]
9. Sustainable Surface-Enhanced Raman Substrate with Hexagonal Boron Nitride Dielectric Spacer for Preventing Electric Field Cancellation at Au-Au Nanogap. Ahn JG; Yeo G; Han Y; Park Y; Hong JW; Lim H ACS Appl Mater Interfaces; 2021 Sep; 13(35):42176-42182. PubMed ID: 34435778 [TBL] [Abstract][Full Text] [Related]
10. Pollutant capturing SERS substrate: porous boron nitride microfibers with uniform silver nanoparticle decoration. Dai P; Xue Y; Wang X; Weng Q; Zhang C; Jiang X; Tang D; Wang X; Kawamoto N; Ide Y; Mitome M; Golberg D; Bando Y Nanoscale; 2015 Dec; 7(45):18992-7. PubMed ID: 26511400 [TBL] [Abstract][Full Text] [Related]
11. Facile molten salt synthesis of atomically thin boron nitride nanosheets and their co-catalytic effect on the performance of carbon nitride photocatalyst. Tian L; Li J; Liang F; Chang S; Zhang H; Zhang M; Zhang S J Colloid Interface Sci; 2019 Feb; 536():664-672. PubMed ID: 30396122 [TBL] [Abstract][Full Text] [Related]
12. Creating SERS hot spots on MoS(2) nanosheets with in situ grown gold nanoparticles. Su S; Zhang C; Yuwen L; Chao J; Zuo X; Liu X; Song C; Fan C; Wang L ACS Appl Mater Interfaces; 2014; 6(21):18735-41. PubMed ID: 25310705 [TBL] [Abstract][Full Text] [Related]
13. Biomass-directed synthesis of 20 g high-quality boron nitride nanosheets for thermoconductive polymeric composites. Wang XB; Weng Q; Wang X; Li X; Zhang J; Liu F; Jiang XF; Guo H; Xu N; Golberg D; Bando Y ACS Nano; 2014 Sep; 8(9):9081-8. PubMed ID: 25133900 [TBL] [Abstract][Full Text] [Related]
14. High and stable surface-enhanced Raman spectroscopy activity of h-BN nanosheet/Au Ge K; Wu Q; Li Y; Gu Y Spectrochim Acta A Mol Biomol Spectrosc; 2022 Apr; 271():120952. PubMed ID: 35123190 [TBL] [Abstract][Full Text] [Related]
15. Mechanical properties of atomically thin boron nitride and the role of interlayer interactions. Falin A; Cai Q; Santos EJG; Scullion D; Qian D; Zhang R; Yang Z; Huang S; Watanabe K; Taniguchi T; Barnett MR; Chen Y; Ruoff RS; Li LH Nat Commun; 2017 Jun; 8():15815. PubMed ID: 28639613 [TBL] [Abstract][Full Text] [Related]
16. Surface enhanced Raman scattering by graphene-nanosheet-gapped plasmonic nanoparticle arrays for multiplexed DNA detection. Duan B; Zhou J; Fang Z; Wang C; Wang X; Hemond HF; Chan-Park MB; Duan H Nanoscale; 2015 Aug; 7(29):12606-13. PubMed ID: 26147399 [TBL] [Abstract][Full Text] [Related]
17. Ultrathin Molybdenum Dioxide Nanosheets as Uniform and Reusable Surface-Enhanced Raman Spectroscopy Substrates with High Sensitivity. Wu H; Zhou X; Li J; Li X; Li B; Fei W; Zhou J; Yin J; Guo W Small; 2018 Sep; 14(37):e1802276. PubMed ID: 30117267 [TBL] [Abstract][Full Text] [Related]
18. Atomically Thin Boron Nitride as an Ideal Spacer for Metal-Enhanced Fluorescence. Gan W; Tserkezis C; Cai Q; Falin A; Mateti S; Nguyen M; Aharonovich I; Watanabe K; Taniguchi T; Huang F; Song L; Kong L; Chen Y; Li LH ACS Nano; 2019 Oct; 13(10):12184-12191. PubMed ID: 31577417 [TBL] [Abstract][Full Text] [Related]
19. Raman signature and phonon dispersion of atomically thin boron nitride. Cai Q; Scullion D; Falin A; Watanabe K; Taniguchi T; Chen Y; Santos EJ; Li LH Nanoscale; 2017 Mar; 9(9):3059-3067. PubMed ID: 28191567 [TBL] [Abstract][Full Text] [Related]
20. Large-scale synthesis of high-quality hexagonal boron nitride nanosheets for large-area graphene electronics. Lee KH; Shin HJ; Lee J; Lee IY; Kim GH; Choi JY; Kim SW Nano Lett; 2012 Feb; 12(2):714-8. PubMed ID: 22220633 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]