These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 27254280)

  • 1. Optimization of process parameters for drilled hole quality characteristics during cortical bone drilling using Taguchi method.
    Singh G; Jain V; Gupta D; Ghai A
    J Mech Behav Biomed Mater; 2016 Sep; 62():355-365. PubMed ID: 27254280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-objective performance investigation of orthopaedic bone drilling using Taguchi membership function.
    Singh G; Jain V; Gupta D
    Proc Inst Mech Eng H; 2017 Dec; 231(12):1133-1139. PubMed ID: 28990459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parametric effect of vibrational drilling on osteonecrosis and comparative histopathology study with conventional drilling of cortical bone.
    Singh G; Jain V; Gupta D; Sharma A
    Proc Inst Mech Eng H; 2018 Oct; 232(10):975-986. PubMed ID: 30112958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rotary ultrasonic bone drilling: Improved pullout strength and reduced damage.
    Gupta V; Pandey PM; Silberschmidt VV
    Med Eng Phys; 2017 Mar; 41():1-8. PubMed ID: 27913176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feed rate control in robotic bone drilling process.
    Boiadjiev T; Boiadjiev G; Delchev K; Chavdarov I; Kastelov R
    Proc Inst Mech Eng H; 2021 Mar; 235(3):273-280. PubMed ID: 33231113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface quality and pullout strength of ultrasonically-assisted drilling cortical bone.
    Hu Y; Fan Z; Zhang H; Zhang C; Fu W
    Proc Inst Mech Eng H; 2021 Apr; 235(4):378-388. PubMed ID: 33356906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation, sensitivity analysis, and multi-objective optimization of effective parameters on temperature and force in robotic drilling cortical bone.
    Tahmasbi V; Ghoreishi M; Zolfaghari M
    Proc Inst Mech Eng H; 2017 Nov; 231(11):1012-1024. PubMed ID: 28803514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization and Modeling of Process Parameters in Multi-Hole Simultaneous Drilling Using Taguchi Method and Fuzzy Logic Approach.
    Aamir M; Tu S; Tolouei-Rad M; Giasin K; Vafadar A
    Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32028691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative study for surface topography of bone drilling using conventional drilling and loose abrasive machining.
    Singh G; Jain V; Gupta D
    Proc Inst Mech Eng H; 2015 Mar; 229(3):225-31. PubMed ID: 25833998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Drilling Techniques on Microcracks and Pull-Out Strength of Cortical Screw Fixed in Human Tibia: An In-Vitro Study.
    Singh RP; Gupta V; Pandey PM; Mridha AR
    Ann Biomed Eng; 2021 Jan; 49(1):382-393. PubMed ID: 32661750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of non-Fourier bioheat transfer on bone drilling temperature in orthopedic surgery: Theoretical and in vitro experimental investigation.
    Kabiri A; Talaee MR
    Proc Inst Mech Eng H; 2022 Jun; 236(6):811-824. PubMed ID: 35486132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling and optimization of temperature in orthopaedic drilling: an in vitro study.
    Pandey RK; Panda SS
    Acta Bioeng Biomech; 2014; 16(1):107-16. PubMed ID: 24707883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A predictive model for cortical bone temperature distribution during drilling.
    Hu Y; Ding H; Shi Y; Zhang H; Zheng Q
    Phys Eng Sci Med; 2021 Mar; 44(1):147-156. PubMed ID: 33459995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental Study of Thrust Force and Torque for Drilling Cortical Bone.
    Sui J; Sugita N
    Ann Biomed Eng; 2019 Mar; 47(3):802-812. PubMed ID: 30627838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A feasibility investigation for modeling and optimization of temperature in bone drilling using fuzzy logic and Taguchi optimization methodology.
    Pandey RK; Panda SS
    Proc Inst Mech Eng H; 2014 Nov; 228(11):1135-45. PubMed ID: 25500858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental investigation on the effect of drill quality on the performance of bone drilling.
    Alam K; Piya S; Al-Ghaithi A; Silberschmidth V
    Biomed Tech (Berl); 2020 Jan; 65(1):113-120. PubMed ID: 31437122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental investigations of forces and torque in conventional and ultrasonically-assisted drilling of cortical bone.
    Alam K; Mitrofanov AV; Silberschmidt VV
    Med Eng Phys; 2011 Mar; 33(2):234-9. PubMed ID: 21044856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of drilling parameters for thermal bone necrosis prevention.
    Akhbar MFA; Yusoff AR
    Technol Health Care; 2018; 26(4):621-635. PubMed ID: 29966212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Colliding jets provide depth control for water jetting in bone tissue.
    den Dunnen S; Dankelman J; Kerkhoffs GM; Tuijthof G
    J Mech Behav Biomed Mater; 2017 Aug; 72():219-228. PubMed ID: 28501719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microwave drilling of bones.
    Eshet Y; Mann RR; Anaton A; Yacoby T; Gefen A; Jerby E
    IEEE Trans Biomed Eng; 2006 Jun; 53(6):1174-82. PubMed ID: 16761844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.