These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 27254459)

  • 1. Electrochemically Produced Graphene for Microporous Layers in Fuel Cells.
    Najafabadi AT; Leeuwner MJ; Wilkinson DP; Gyenge EL
    ChemSusChem; 2016 Jul; 9(13):1689-97. PubMed ID: 27254459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of transport at the interface in the microporous layer for high power density proton exchange membrane fuel cells.
    Wu N; Liu Y; Zhang S; Hou D; Yang R; Qi Y; Wang L
    J Colloid Interface Sci; 2024 Mar; 657():428-437. PubMed ID: 38056047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved Electrodes for High Temperature Proton Exchange Membrane Fuel Cells using Carbon Nanospheres.
    Zamora H; Plaza J; Cañizares P; Lobato J; Rodrigo MA
    ChemSusChem; 2016 May; 9(10):1187-93. PubMed ID: 27076055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal-catalyst-free carbohydrazide fuel cells with three-dimensional graphene anodes.
    Qi J; Benipal N; Wang H; Chadderdon DJ; Jiang Y; Wei W; Hu YH; Li W
    ChemSusChem; 2015 Apr; 8(7):1147-50. PubMed ID: 25469500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemically exfoliated graphene anodes with enhanced biocurrent production in single-chamber air-breathing microbial fuel cells.
    Najafabadi AT; Ng N; Gyenge E
    Biosens Bioelectron; 2016 Jul; 81():103-110. PubMed ID: 26926591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon-Nanowall Microporous Layers for Proton Exchange Membrane Fuel Cell.
    Balan AE; Bita BI; Vizireanu S; Dinescu G; Stamatin I; Trefilov AMI
    Membranes (Basel); 2022 Oct; 12(11):. PubMed ID: 36363619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superior hybrid cathode material containing lithium-excess layered material and graphene for lithium-ion batteries.
    Jiang KC; Wu XL; Yin YX; Lee JS; Kim J; Guo YG
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4858-63. PubMed ID: 22931115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Slip-Enhanced Transport by Graphene in the Microporous Layer for High Power Density Proton-Exchange Membrane Fuel Cells.
    Liu Y; Wu N; Zeng H; Hou D; Zhang S; Qi Y; Yang R; Wang L
    J Phys Chem Lett; 2023 Sep; 14(35):7883-7891. PubMed ID: 37639374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microporous Layers with Different Decorative Patterns for Polymer Electrolyte Membrane Fuel Cells.
    Chen L; Lin R; Chen X; Hao Z; Diao X; Froning D; Tang S
    ACS Appl Mater Interfaces; 2020 May; 12(21):24048-24058. PubMed ID: 32374155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scalable Preparation of Ternary Hierarchical Silicon Oxide-Nickel-Graphite Composites for Lithium-Ion Batteries.
    Wang J; Bao W; Ma L; Tan G; Su Y; Chen S; Wu F; Lu J; Amine K
    ChemSusChem; 2015 Dec; 8(23):4073-80. PubMed ID: 26548901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved fuel cell and electrode designs for producing electricity from microbial degradation.
    Park DH; Zeikus JG
    Biotechnol Bioeng; 2003 Feb; 81(3):348-55. PubMed ID: 12474258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superior lithium storage performance using sequentially stacked MnO2/reduced graphene oxide composite electrodes.
    Kim SJ; Yun YJ; Kim KW; Chae C; Jeong S; Kang Y; Choi SY; Lee SS; Choi S
    ChemSusChem; 2015 Apr; 8(8):1484-91. PubMed ID: 25845554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porous nitrogen-doped carbon nanosheet on graphene as metal-free catalyst for oxygen reduction reaction in air-cathode microbial fuel cells.
    Wen Q; Wang S; Yan J; Cong L; Chen Y; Xi H
    Bioelectrochemistry; 2014 Feb; 95():23-8. PubMed ID: 24239870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A highly stable anode, carbon-free, catalyst support based on tungsten trioxide nanoclusters for proton-exchange membrane fuel cells.
    Dou M; Hou M; Zhang H; Li G; Lu W; Wei Z; Shao Z; Yi B
    ChemSusChem; 2012 May; 5(5):945-51. PubMed ID: 22532479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crumpled graphene-molybdenum oxide composite powders: preparation and application in lithium-ion batteries.
    Choi SH; Kang YC
    ChemSusChem; 2014 Feb; 7(2):523-8. PubMed ID: 24243867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexible holey graphene paper electrodes with enhanced rate capability for energy storage applications.
    Zhao X; Hayner CM; Kung MC; Kung HH
    ACS Nano; 2011 Nov; 5(11):8739-49. PubMed ID: 21980979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemically Driven Deactivation and Recovery in PrBaCo2 O5+δ Oxygen Electrodes for Reversible Solid Oxide Fuel Cells.
    Zhu L; Wei B; Wang Z; Chen K; Zhang H; Zhang Y; Huang X; Lü Z
    ChemSusChem; 2016 Sep; 9(17):2443-50. PubMed ID: 27515117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ formation of graphene layers on graphite surfaces for efficient anodes of microbial fuel cells.
    Tang J; Chen S; Yuan Y; Cai X; Zhou S
    Biosens Bioelectron; 2015 Sep; 71():387-395. PubMed ID: 25950933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microporous Layer Containing CeO
    Chen L; Lin R; Yu X; Zheng T; Dong M; Lou M; Ma Y; Hao Z
    ACS Appl Mater Interfaces; 2021 May; 13(17):20201-20212. PubMed ID: 33896170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vertical distribution of overpotentials and irreversible charge losses in lithium ion battery electrodes.
    Klink S; Schuhmann W; La Mantia F
    ChemSusChem; 2014 Aug; 7(8):2159-66. PubMed ID: 24989450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.