These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 27254476)

  • 1. Aromatic Side Chain Water-to-Lipid Transfer Free Energies Show a Depth Dependence across the Membrane Normal.
    McDonald SK; Fleming KG
    J Am Chem Soc; 2016 Jun; 138(25):7946-50. PubMed ID: 27254476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Side-chain hydrophobicity scale derived from transmembrane protein folding into lipid bilayers.
    Moon CP; Fleming KG
    Proc Natl Acad Sci U S A; 2011 Jun; 108(25):10174-7. PubMed ID: 21606332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of tryptophan side chains in membrane protein anchoring and hydrophobic mismatch.
    de Jesus AJ; Allen TW
    Biochim Biophys Acta; 2013 Feb; 1828(2):864-76. PubMed ID: 22989724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane depth-dependent energetic contribution of the tryptophan side chain to the stability of integral membrane proteins.
    Hong H; Rinehart D; Tamm LK
    Biochemistry; 2013 Jun; 52(25):4413-21. PubMed ID: 23763479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local Bilayer Hydrophobicity Modulates Membrane Protein Stability.
    Marx DC; Fleming KG
    J Am Chem Soc; 2021 Jan; 143(2):764-772. PubMed ID: 33412852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An atomic and molecular view of the depth dependence of the free energies of solute transfer from water into lipid bilayers.
    Tejwani RW; Davis ME; Anderson BD; Stouch TR
    Mol Pharm; 2011 Dec; 8(6):2204-15. PubMed ID: 21988564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of aromatic side chains in the folding and thermodynamic stability of integral membrane proteins.
    Hong H; Park S; Jiménez RH; Rinehart D; Tamm LK
    J Am Chem Soc; 2007 Jul; 129(26):8320-7. PubMed ID: 17564441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics study of the behavior of selected nanoscale building blocks in a gel-phase lipid bilayer.
    Redmill PS; McCabe C
    J Phys Chem B; 2010 Jul; 114(28):9165-72. PubMed ID: 20583770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Outer membrane phospholipase A in phospholipid bilayers: a model system for concerted computational and experimental investigations of amino acid side chain partitioning into lipid bilayers.
    Fleming PJ; Freites JA; Moon CP; Tobias DJ; Fleming KG
    Biochim Biophys Acta; 2012 Feb; 1818(2):126-34. PubMed ID: 21816133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The determinants of hydrophobic mismatch response for transmembrane helices.
    de Jesus AJ; Allen TW
    Biochim Biophys Acta; 2013 Feb; 1828(2):851-63. PubMed ID: 22995244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The importance of the membrane interface as the reference state for membrane protein stability.
    Ulmschneider JP; Smith JC; White SH; Ulmschneider MB
    Biochim Biophys Acta Biomembr; 2018 Dec; 1860(12):2539-2548. PubMed ID: 30293965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparisons of interfacial Phe, Tyr, and Trp residues as determinants of orientation and dynamics for GWALP transmembrane peptides.
    Sparks KA; Gleason NJ; Gist R; Langston R; Greathouse DV; Koeppe RE
    Biochemistry; 2014 Jun; 53(22):3637-45. PubMed ID: 24829070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane transporter dimerization driven by differential lipid solvation energetics of dissociated and associated states.
    Chadda R; Bernhardt N; Kelley EG; Teixeira SC; Griffith K; Gil-Ley A; Öztürk TN; Hughes LE; Forsythe A; Krishnamani V; Faraldo-Gómez JD; Robertson JL
    Elife; 2021 Apr; 10():. PubMed ID: 33825681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward understanding driving forces in membrane protein folding.
    Hong H
    Arch Biochem Biophys; 2014 Dec; 564():297-313. PubMed ID: 25107533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The nature of the hydrophobic binding of small peptides at the bilayer interface: implications for the insertion of transbilayer helices.
    Jacobs RE; White SH
    Biochemistry; 1989 Apr; 28(8):3421-37. PubMed ID: 2742845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Critical Comparison of Biomembrane Force Fields: Protein-Lipid Interactions at the Membrane Interface.
    Sandoval-Perez A; Pluhackova K; Böckmann RA
    J Chem Theory Comput; 2017 May; 13(5):2310-2321. PubMed ID: 28388089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics simulations of pentapeptides at interfaces: salt bridge and cation-pi interactions.
    Aliste MP; MacCallum JL; Tieleman DP
    Biochemistry; 2003 Aug; 42(30):8976-87. PubMed ID: 12885230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-spanning membrane protein insertion in membrane mimetic systems: role and localization of aromatic residues.
    Coïc YM; Vincent M; Gallay J; Baleux F; Mousson F; Beswick V; Neumann JM; de Foresta B
    Eur Biophys J; 2005 Dec; 35(1):27-39. PubMed ID: 16025323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional group dependence of solute partitioning to various locations within a DOPC bilayer: a comparison of molecular dynamics simulations with experiment.
    Tejwani RW; Davis ME; Anderson BD; Stouch TR
    J Pharm Sci; 2011 Jun; 100(6):2136-46. PubMed ID: 21491439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.