These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 27254601)

  • 1. Control of Integrated Task Sequences Shapes Components of Reaching.
    Viswanathan P; Whitall J; Kagerer FA
    J Mot Behav; 2016; 48(5):435-45. PubMed ID: 27254601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gender differences in non-standard mapping tasks: A kinematic study using pantomimed reach-to-grasp actions.
    Copley-Mills J; Connolly JD; Cavina-Pratesi C
    Cortex; 2016 Sep; 82():244-254. PubMed ID: 27410715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Programming of left hand exploits task set but that of right hand depends on recent history.
    Tang R; Zhu H
    Exp Brain Res; 2017 Jul; 235(7):2215-2224. PubMed ID: 28451736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Movement planning in prehension: do intended actions influence the initial reach and grasp movement?
    Armbrüster C; Spijkers W
    Motor Control; 2006 Oct; 10(4):311-29. PubMed ID: 17293615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Failure to disrupt the 'sensorimotor' memory for lifting objects with a precision grip.
    Cole KJ; Potash M; Peterson C
    Exp Brain Res; 2008 Jan; 184(2):157-63. PubMed ID: 17717654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age-related changes in reach-to-grasp movements with partial visual occlusion.
    Runnarong N; Tretriluxana J; Waiyasil W; Sittisupapong P; Tretriluxana S
    PLoS One; 2019; 14(8):e0221320. PubMed ID: 31461484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of visual feedback from the recent past on the programming of grip aperture is grasp-specific, shared between hands, and mediated by sensorimotor memory not task set.
    Tang R; Whitwell RL; Goodale MA
    Cognition; 2015 May; 138():49-63. PubMed ID: 25704582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calibrating grasp size and reach distance: interactions reveal integral organization of reaching-to-grasp movements.
    Coats R; Bingham GP; Mon-Williams M
    Exp Brain Res; 2008 Aug; 189(2):211-20. PubMed ID: 18493753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synchrony of the Reach and the Grasp in pantomime reach-to-grasp.
    Kuntz JR; Whishaw IQ
    Exp Brain Res; 2016 Nov; 234(11):3291-3303. PubMed ID: 27449931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The continuous updating of grasp in response to dynamic changes in object size, hand size and distractor proximity.
    Karok S; Newport R
    Neuropsychologia; 2010 Nov; 48(13):3891-900. PubMed ID: 20933527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time Course of Tactile Gating in a Reach-to-Grasp and Lift Task.
    Colino FL; Binsted G
    J Mot Behav; 2016; 48(5):390-400. PubMed ID: 27254788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Grasp: combined contribution of object properties and task constraints on hand and finger posture.
    Touvet F; Roby-Brami A; Maier MA; Eskiizmirliler S
    Exp Brain Res; 2014 Oct; 232(10):3055-67. PubMed ID: 24888535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neurophysiology of prehension. I. Posterior parietal cortex and object-oriented hand behaviors.
    Gardner EP; Babu KS; Reitzen SD; Ghosh S; Brown AS; Chen J; Hall AL; Herzlinger MD; Kohlenstein JB; Ro JY
    J Neurophysiol; 2007 Jan; 97(1):387-406. PubMed ID: 16971679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highs and Lows in Motor Control Development.
    Martel M; Fourneret P; Finos L; Schmitz C; Catherine Roy A
    J Mot Behav; 2020; 52(4):404-417. PubMed ID: 31339466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reach-to-grasp kinematics and kinetics with and without visual feedback in early-stage Alzheimer's disease.
    Zhang J; Xiao Y; Li ZM; Wei N; Lin L; Li K
    J Neuroeng Rehabil; 2022 Nov; 19(1):121. PubMed ID: 36357939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hand synergies during reach-to-grasp.
    Mason CR; Gomez JE; Ebner TJ
    J Neurophysiol; 2001 Dec; 86(6):2896-910. PubMed ID: 11731546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptation of reach-to-grasp movement in response to force perturbations.
    Rand MK; Shimansky Y; Stelmach GE; Bloedel JR
    Exp Brain Res; 2004 Jan; 154(1):50-65. PubMed ID: 14530893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Planning Ahead: Object-Directed Sequential Actions Decoded from Human Frontoparietal and Occipitotemporal Networks.
    Gallivan JP; Johnsrude IS; Flanagan JR
    Cereb Cortex; 2016 Feb; 26(2):708-30. PubMed ID: 25576538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of sight of the hand in the development of prehension in childhood.
    Smyth MM; Peacock KA; Katamba J
    Q J Exp Psychol A; 2004 Feb; 57(2):269-96. PubMed ID: 14742177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hand preshaping in Parkinson's disease: effects of visual feedback and medication state.
    Schettino LF; Adamovich SV; Hening W; Tunik E; Sage J; Poizner H
    Exp Brain Res; 2006 Jan; 168(1-2):186-202. PubMed ID: 16041510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.