These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 27254744)

  • 1. Simulations of Pore Formation in Lipid Membranes: Reaction Coordinates, Convergence, Hysteresis, and Finite-Size Effects.
    Awasthi N; Hub JS
    J Chem Theory Comput; 2016 Jul; 12(7):3261-9. PubMed ID: 27254744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing a Continuous Polar Defect: A Reaction Coordinate for Pore Formation in Lipid Membranes.
    Hub JS; Awasthi N
    J Chem Theory Comput; 2017 May; 13(5):2352-2366. PubMed ID: 28376619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Joint Reaction Coordinate for Computing the Free-Energy Landscape of Pore Nucleation and Pore Expansion in Lipid Membranes.
    Hub JS
    J Chem Theory Comput; 2021 Feb; 17(2):1229-1239. PubMed ID: 33427469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accelerating potential of mean force calculations for lipid membrane permeation: System size, reaction coordinate, solute-solute distance, and cutoffs.
    Nitschke N; Atkovska K; Hub JS
    J Chem Phys; 2016 Sep; 145(12):125101. PubMed ID: 27782650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Free energetics and the role of water in the permeation of methyl guanidinium across the bilayer-water interface: insights from molecular dynamics simulations using charge equilibration potentials.
    Ou S; Lucas TR; Zhong Y; Bauer BA; Hu Y; Patel S
    J Phys Chem B; 2013 Apr; 117(13):3578-92. PubMed ID: 23409975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential of Mean Force Calculations of Solute Permeation Across UT-B and AQP1: A Comparison between Molecular Dynamics and 3D-RISM.
    Ariz-Extreme I; Hub JS
    J Phys Chem B; 2017 Feb; 121(7):1506-1519. PubMed ID: 28128570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Simulations Reveal the Free Energy Landscape and Transition State of Membrane Electroporation.
    Kasparyan G; Hub JS
    Phys Rev Lett; 2024 Apr; 132(14):148401. PubMed ID: 38640376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into the effect of combustion-generated carbon nanoparticles on biological membranes: a computer simulation study.
    Chang R; Violi A
    J Phys Chem B; 2006 Mar; 110(10):5073-83. PubMed ID: 16526750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Designing Reaction Coordinate for Ion-Induced Pore-Assisted Mechanism of Halide Ions Permeation through Lipid Bilayer by Umbrella Sampling.
    Mathath AV; Das BK; Chakraborty D
    J Chem Inf Model; 2023 Dec; 63(24):7778-7790. PubMed ID: 38050816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The free energy of nanopores in tense membranes.
    Grafmüller A; Knecht V
    Phys Chem Chem Phys; 2014 Jun; 16(23):11270-8. PubMed ID: 24780914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating Hydrophilic Pores in Model Lipid Bilayers Using Molecular Simulations: Correlating Bilayer Properties with Pore-Formation Thermodynamics.
    Hu Y; Sinha SK; Patel S
    Langmuir; 2015 Jun; 31(24):6615-31. PubMed ID: 25614183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cooperative Effects of an Antifungal Moiety and DMSO on Pore Formation over Lipid Membranes Revealed by Free Energy Calculations.
    Kasparyan G; Poojari C; Róg T; Hub JS
    J Phys Chem B; 2020 Oct; 124(40):8811-8821. PubMed ID: 32924486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multistep Molecular Dynamics Simulations Identify the Highly Cooperative Activity of Melittin in Recognizing and Stabilizing Membrane Pores.
    Sun D; Forsman J; Woodward CE
    Langmuir; 2015 Sep; 31(34):9388-401. PubMed ID: 26267389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-dimensional potential of mean force underestimates activation barrier for transport across flexible lipid membranes.
    Kopelevich DI
    J Chem Phys; 2013 Oct; 139(13):134906. PubMed ID: 24116584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Convergence and Sampling in Determining Free Energy Landscapes for Membrane Protein Association.
    Domański J; Hedger G; Best RB; Stansfeld PJ; Sansom MSP
    J Phys Chem B; 2017 Apr; 121(15):3364-3375. PubMed ID: 27807980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alpha-tocopherol inhibits pore formation in oxidized bilayers.
    Boonnoy P; Karttunen M; Wong-Ekkabut J
    Phys Chem Chem Phys; 2017 Feb; 19(8):5699-5704. PubMed ID: 28138670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Insights into Pore Formation Mechanism, Membrane Perturbation, and Water Permeation by the Antimicrobial Peptide Pleurocidin: A Combined All-Atom and Coarse-Grained Molecular Dynamics Simulation Study.
    Talandashti R; Mehrnejad F; Rostamipour K; Doustdar F; Lavasanifar A
    J Phys Chem B; 2021 Jul; 125(26):7163-7176. PubMed ID: 34171196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pore formation coupled to ion transport through lipid membranes as induced by transmembrane ionic charge imbalance: atomistic molecular dynamics study.
    Gurtovenko AA; Vattulainen I
    J Am Chem Soc; 2005 Dec; 127(50):17570-1. PubMed ID: 16351063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How to tackle the issues in free energy simulations of long amphiphiles interacting with lipid membranes: convergence and local membrane deformations.
    Filipe HA; Moreno MJ; Róg T; Vattulainen I; Loura LM
    J Phys Chem B; 2014 Apr; 118(13):3572-81. PubMed ID: 24635540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.