These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 27254767)

  • 61. An intron loss in the chloroplast gene rpoC1 supports a monophyletic origin for the subfamily Cactoideae of the Cactaceae.
    Wallace RS; Cota JH
    Curr Genet; 1996 Feb; 29(3):275-81. PubMed ID: 8595674
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Characterization of the TrnD, TrnK, PsaA locus of Euglena gracilis chloroplast DNA.
    Manzara T; Hu JX; Price CA; Hallick RB
    Plant Mol Biol; 1987 Jul; 8(4):327-36. PubMed ID: 24301195
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Discovery of a new photosynthetic euglenoid in Poland: Euglena mazurica sp. nov. (Euglenales, Euglenaceae).
    Zakryś B; Jankowska K; Majerowicz A; Fells A; Łukomska-Kowalczyk M
    Protist; 2024 Apr; 175(2):126015. PubMed ID: 38301533
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Introns form compositional clusters in parallel with the compositional clusters of the coding sequences to which they pertain.
    Fuertes MA; Pérez JM; Zuckerkandl E; Alonso C
    J Mol Evol; 2011 Jan; 72(1):1-13. PubMed ID: 21132282
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Arsenic hypertolerance in the protist Euglena mutabilis is mediated by specific transporters and functional integrity maintenance mechanisms.
    Halter D; Andres J; Plewniak F; Poulain J; Da Silva C; Arsène-Ploetze F; Bertin PN
    Environ Microbiol; 2015 Jun; 17(6):1941-9. PubMed ID: 24698441
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Heterotrophic euglenid Rhabdomonas costata resembles its phototrophic relatives in many aspects of molecular and cell biology.
    Soukal P; Hrdá Š; Karnkowska A; Milanowski R; Szabová J; Hradilová M; Strnad H; Vlček Č; Čepička I; Hampl V
    Sci Rep; 2021 Jun; 11(1):13070. PubMed ID: 34158556
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Trends in the evolution of the euglenid pellicle.
    Leander BS; Witek RP; Farmer MA
    Evolution; 2001 Nov; 55(11):2215-35. PubMed ID: 11794782
    [TBL] [Abstract][Full Text] [Related]  

  • 68.
    Inwongwan S; Kruger NJ; Ratcliffe RG; O'Neill EC
    Metabolites; 2019 Jun; 9(6):. PubMed ID: 31207935
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Comparative morphology of the euglenid pellicle. II. Diversity of strip substructure.
    Leander BS; Farmer MA
    J Eukaryot Microbiol; 2001; 48(2):202-17. PubMed ID: 12095109
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Ultrastructure of five Euglena species positioned in the subdivision Serpentes.
    Kusel-Fetzmann E; Weidinger M
    Protoplasma; 2008 Nov; 233(3-4):209-22. PubMed ID: 18584283
    [TBL] [Abstract][Full Text] [Related]  

  • 71. In situ proteo-metabolomics reveals metabolite secretion by the acid mine drainage bio-indicator, Euglena mutabilis.
    Halter D; Goulhen-Chollet F; Gallien S; Casiot C; Hamelin J; Gilard F; Heintz D; Schaeffer C; Carapito C; Van Dorsselaer A; Tcherkez G; Arsène-Ploetze F; Bertin PN
    ISME J; 2012 Jul; 6(7):1391-402. PubMed ID: 22237547
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Euglena mutabilis exists in a FAB consortium with microbes that enhance cadmium tolerance.
    Kaszecki E; Palberg D; Grant M; Griffin S; Dhanjal C; Capperauld M; Emery RJN; Saville BJ
    Int Microbiol; 2024 Jan; ():. PubMed ID: 38167969
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Introns and the origin of protein-coding genes.
    Bertolaet BL; Seidel HM; Knowles JR
    Science; 1995 Jun; 268(5215):1367; author reply 1367-9. PubMed ID: 7761859
    [No Abstract]   [Full Text] [Related]  

  • 74. A cytostome/cytopharynx in green euglenoid flagellates (Euglenales) and its phylogenetic implications.
    Willey RL; Wibel RG
    Biosystems; 1985; 18(3-4):369-76. PubMed ID: 4084679
    [TBL] [Abstract][Full Text] [Related]  

  • 75. STRUCTURE AND PHYSIOLOGY OF EUGLENA SPIROGYRA. 3-6.
    LEEDALE GF; MEEUSE BJ; PRINGSHEIM G
    Arch Mikrobiol; 1965 Jan; 50():133-55. PubMed ID: 14304664
    [No Abstract]   [Full Text] [Related]  

  • 76. [COMPARATIVE STUDIES ON THE DEVELOPMENTAL CYCLES OF SOME SPECIES FROM THE GENUS ASTASIA (EUGLENOIDINA PARASITICA)].
    MICHAJLOW W
    Wiad Parazytol; 1965; 11():SUPPL:227-36. PubMed ID: 14316566
    [No Abstract]   [Full Text] [Related]  

  • 77. Notes on the Euglenae with presentation of a probable new species.
    PACKARD CE
    Trans Am Microsc Soc; 1947 Jan; 66(1):85-95. PubMed ID: 20242306
    [No Abstract]   [Full Text] [Related]  

  • 78. STUDIES OF CHLOROPLAST DEVELOPMENT IN EUGLENA, VIII. CHLOROPLAST-ASSOCIATED DNA.
    Edelman M; Cowan CA; Epstein HT; Schiff JA
    Proc Natl Acad Sci U S A; 1964 Nov; 52(5):1214-9. PubMed ID: 16578578
    [No Abstract]   [Full Text] [Related]  

  • 79. Studies of Chloroplast Development in Euglena. V. Pigment Biosynthesis, Photosynthetic Oxygen Evolution and Carbon Dioxide Fixation during Chloroplast Development.
    Stern AI; Schiff JA; Epstein HT
    Plant Physiol; 1964 Mar; 39(2):220-6. PubMed ID: 16655901
    [No Abstract]   [Full Text] [Related]  

  • 80. Biochemical changes during acetate deprivation and repletion in Euglena.
    BLUM JJ; BUETOW DE
    Exp Cell Res; 1963 Feb; 29():407-21. PubMed ID: 13971860
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.