These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 27255099)

  • 1. Root adaptations to soils with low fertility and aluminium toxicity.
    Rao IM; Miles JW; Beebe SE; Horst WJ
    Ann Bot; 2016 Oct; 118(4):593-605. PubMed ID: 27255099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complementarity in root architecture for nutrient uptake in ancient maize/bean and maize/bean/squash polycultures.
    Postma JA; Lynch JP
    Ann Bot; 2012 Jul; 110(2):521-34. PubMed ID: 22523423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Root cortical aerenchyma enhances the growth of maize on soils with suboptimal availability of nitrogen, phosphorus, and potassium.
    Postma JA; Lynch JP
    Plant Physiol; 2011 Jul; 156(3):1190-201. PubMed ID: 21628631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical evidence for the functional benefit of root cortical aerenchyma in soils with low phosphorus availability.
    Postma JA; Lynch JP
    Ann Bot; 2011 Apr; 107(5):829-41. PubMed ID: 20971728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Erratum: Eyestalk Ablation to Increase Ovarian Maturation in Mud Crabs.
    J Vis Exp; 2023 May; (195):. PubMed ID: 37235796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crop root system plasticity for improved yields in saline soils.
    Shelden MC; Munns R
    Front Plant Sci; 2023; 14():1120583. PubMed ID: 36909408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emerging Pleiotropic Mechanisms Underlying Aluminum Resistance and Phosphorus Acquisition on Acidic Soils.
    Magalhaes JV; Piñeros MA; Maciel LS; Kochian LV
    Front Plant Sci; 2018; 9():1420. PubMed ID: 30319678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic root growth and architecture responses to limiting nutrient availability: linking physiological models and experimentation.
    Postma JA; Schurr U; Fiorani F
    Biotechnol Adv; 2014; 32(1):53-65. PubMed ID: 24012600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Root phenotypes for improved nutrient capture: an underexploited opportunity for global agriculture.
    Lynch JP
    New Phytol; 2019 Jul; 223(2):548-564. PubMed ID: 30746704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Root phenes that reduce the metabolic costs of soil exploration: opportunities for 21st century agriculture.
    Lynch JP
    Plant Cell Environ; 2015 Sep; 38(9):1775-84. PubMed ID: 25255708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nutrient cycling in forests.
    Attiwill PM; Adams MA
    New Phytol; 1993 Aug; 124(4):561-582. PubMed ID: 33874438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of root phenes for soil resource acquisition.
    York LM; Nord EA; Lynch JP
    Front Plant Sci; 2013; 4():355. PubMed ID: 24062755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intensive field phenotyping of maize (Zea mays L.) root crowns identifies phenes and phene integration associated with plant growth and nitrogen acquisition.
    York LM; Lynch JP
    J Exp Bot; 2015 Sep; 66(18):5493-505. PubMed ID: 26041317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New roots for agriculture: exploiting the root phenome.
    Lynch JP; Brown KM
    Philos Trans R Soc Lond B Biol Sci; 2012 Jun; 367(1595):1598-604. PubMed ID: 22527403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of US maize (Zea mays L.) root architectural and anatomical phenes over the past 100 years corresponds to increased tolerance of nitrogen stress.
    York LM; Galindo-Castañeda T; Schussler JR; Lynch JP
    J Exp Bot; 2015 Apr; 66(8):2347-58. PubMed ID: 25795737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Root Adaptation via Common Genetic Factors Conditioning Tolerance to Multiple Stresses for Crops Cultivated on Acidic Tropical Soils.
    Barros VA; Chandnani R; de Sousa SM; Maciel LS; Tokizawa M; Guimaraes CT; Magalhaes JV; Kochian LV
    Front Plant Sci; 2020; 11():565339. PubMed ID: 33281841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nutritional regulation of root development.
    Ruiz Herrera LF; Shane MW; López-Bucio J
    Wiley Interdiscip Rev Dev Biol; 2015; 4(4):431-43. PubMed ID: 25760021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Harnessing root architecture to address global challenges.
    Lynch JP
    Plant J; 2022 Jan; 109(2):415-431. PubMed ID: 34724260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Matching roots to their environment.
    White PJ; George TS; Gregory PJ; Bengough AG; Hallett PD; McKenzie BM
    Ann Bot; 2013 Jul; 112(2):207-22. PubMed ID: 23821619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.