These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
506 related articles for article (PubMed ID: 27255316)
21. Preparation of a novel chitosan-based magnetic adsorbent CTS@SnO Yu S; Wang J; Cui J Int J Biol Macromol; 2020 Aug; 156():1474-1482. PubMed ID: 31790736 [TBL] [Abstract][Full Text] [Related]
22. Synthesis of a novel illite@carbon nanocomposite adsorbent for removal of Cr(VI) from wastewater. Wang G; Wang S; Sun W; Sun Z; Zheng S J Environ Sci (China); 2017 Jul; 57():62-71. PubMed ID: 28647266 [TBL] [Abstract][Full Text] [Related]
23. A review on applicability of naturally available adsorbents for the removal of hazardous dyes from aqueous waste. Sharma P; Kaur H; Sharma M; Sahore V Environ Monit Assess; 2011 Dec; 183(1-4):151-95. PubMed ID: 21387170 [TBL] [Abstract][Full Text] [Related]
24. Application of polyaniline-based adsorbents for dye removal from water and wastewater-a review. Nasar A; Mashkoor F Environ Sci Pollut Res Int; 2019 Feb; 26(6):5333-5356. PubMed ID: 30612350 [TBL] [Abstract][Full Text] [Related]
25. A sustainable remediation of Congo red dye using magnetic carbon nanodots and B. pseudomycoides MH229766 composite: mechanistic insight and column modelling studies. Sinha S; Mehrotra T; Kumar N; Solanki S; Bisaria K; Singh R Environ Sci Pollut Res Int; 2022 Nov; 29(53):80088-80108. PubMed ID: 35672648 [TBL] [Abstract][Full Text] [Related]
26. Adsorption studies of cationic, anionic and azo-dyes via monodispersed Fe3O4 nanoparticles. Chaudhary GR; Saharan P; Kumar A; Mehta SK; Mor S; Umar A J Nanosci Nanotechnol; 2013 May; 13(5):3240-5. PubMed ID: 23858837 [TBL] [Abstract][Full Text] [Related]
27. Synthesis of malachite@clay nanocomposite for rapid scavenging of cationic and anionic dyes from synthetic wastewater. Srivastava V; Sillanpää M J Environ Sci (China); 2017 Jan; 51():97-110. PubMed ID: 28115155 [TBL] [Abstract][Full Text] [Related]
28. Magnetic nanopowder as effective adsorbent for the removal of Congo Red from aqueous solution. Paşka O; Ianoş R; Păcurariu C; Brădeanu A Water Sci Technol; 2014; 69(6):1234-40. PubMed ID: 24647189 [TBL] [Abstract][Full Text] [Related]
29. Adsorptive potential of iron oxide based nanocomposite for the sequestration of Congo red from aqueous solution. Sarojini G; Babu SV; Rajasimman M Chemosphere; 2022 Jan; 287(Pt 4):132371. PubMed ID: 34597648 [TBL] [Abstract][Full Text] [Related]
30. [Synthesis of hydroxyapatite/magnetite/zeolite composite for Congo red removal from aqueous solution]. Fang Q; Lin JW; Zhan YH; Yang MJ; Zheng WJ Huan Jing Ke Xue; 2014 Aug; 35(8):2992-3001. PubMed ID: 25338371 [TBL] [Abstract][Full Text] [Related]
31. Removal of anionic dye Congo red from aqueous solution by raw pine and acid-treated pine cone powder as adsorbent: equilibrium, thermodynamic, kinetics, mechanism and process design. Dawood S; Sen TK Water Res; 2012 Apr; 46(6):1933-46. PubMed ID: 22289676 [TBL] [Abstract][Full Text] [Related]
32. Adsorption of methylene blue and Congo red from aqueous solution by activated carbon and carbon nanotubes. Szlachta M; Wójtowicz P Water Sci Technol; 2013; 68(10):2240-8. PubMed ID: 24292474 [TBL] [Abstract][Full Text] [Related]
33. Performance Study of a Low-cost Adsorbent-Raw Date Pits-for Removal of Azo Dye in Aqueous Solution. Hachani R; Sabir H; Sana N; Zohra KF; Nesrine NM Water Environ Res; 2017 Sep; 89(9):827-839. PubMed ID: 28855019 [TBL] [Abstract][Full Text] [Related]
34. A rational design of layered metal-organic framework towards high-performance adsorption of hazardous organic dye. Guo DD; Li B; Deng ZP; Huo LH; Gao S Dalton Trans; 2021 Jun; 50(22):7818-7825. PubMed ID: 34008585 [TBL] [Abstract][Full Text] [Related]
35. Facile synthesis and optimization of Acacia senegal gum hydrogel for kinetically treated adsorptive removal of targeted industrial effluents. Farooq M; Rauf N; Marwat SA; Shabbir G; Ihsan J; Mohamed RMK Int J Biol Macromol; 2024 Nov; 279(Pt 1):134879. PubMed ID: 39168198 [TBL] [Abstract][Full Text] [Related]
36. Comparison of Spirulina platensis microalgae and commercial activated carbon as adsorbents for the removal of Reactive Red 120 dye from aqueous effluents. Cardoso NF; Lima EC; Royer B; Bach MV; Dotto GL; Pinto LA; Calvete T J Hazard Mater; 2012 Nov; 241-242():146-53. PubMed ID: 23040660 [TBL] [Abstract][Full Text] [Related]
37. Removal of malachite green dye from wastewater by different organic acid-modified natural adsorbent: kinetics, equilibriums, mechanisms, practical application, and disposal of dye-loaded adsorbent. Wang H; Yuan X; Zeng G; Leng L; Peng X; Liao K; Peng L; Xiao Z Environ Sci Pollut Res Int; 2014 Oct; 21(19):11552-64. PubMed ID: 25028314 [TBL] [Abstract][Full Text] [Related]
38. Enhanced removal of hazardous dye form aqueous solutions and real textile wastewater using bifunctional chitin/lignin biosorbent. Wawrzkiewicz M; Bartczak P; Jesionowski T Int J Biol Macromol; 2017 Jun; 99():754-764. PubMed ID: 28283458 [TBL] [Abstract][Full Text] [Related]
39. Application of low-cost adsorbents for dye removal--a review. Gupta VK; Suhas J Environ Manage; 2009 Jun; 90(8):2313-42. PubMed ID: 19264388 [TBL] [Abstract][Full Text] [Related]
40. Tailoring of spherical nanocellulose via esterification with methionine followed by protonation to generate two different adsorbents for mercuric ions and Congo red. Chauhan S; Jamwal P; Chauhan GS; Kumar K; Kumari B; Ranote S Int J Biol Macromol; 2024 Nov; 279(Pt 2):135313. PubMed ID: 39242000 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]