These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 27255452)

  • 1. Mechanobiological simulations of peri-acetabular bone ingrowth: a comparative analysis of cell-phenotype specific and phenomenological algorithms.
    Mukherjee K; Gupta S
    Med Biol Eng Comput; 2017 Mar; 55(3):449-465. PubMed ID: 27255452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone ingrowth around porous-coated acetabular implant: a three-dimensional finite element study using mechanoregulatory algorithm.
    Mukherjee K; Gupta S
    Biomech Model Mechanobiol; 2016 Apr; 15(2):389-403. PubMed ID: 26130375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Implant Surface Texture Design on Peri-Acetabular Bone Ingrowth: A Mechanobiology Based Finite Element Analysis.
    Mukherjee K; Gupta S
    J Biomech Eng; 2017 Mar; 139(3):. PubMed ID: 27925634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined Bone Ingrowth and Remodeling Around Uncemented Acetabular Component: A Multiscale Mechanobiology-Based Finite Element Analysis.
    Mukherjee K; Gupta S
    J Biomech Eng; 2017 Sep; 139(9):. PubMed ID: 28696483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone Ingrowth Around an Uncemented Femoral Implant Using Mechanoregulatory Algorithm: A Multiscale Finite Element Analysis.
    Mathai B; Gupta S
    J Biomech Eng; 2022 Feb; 144(2):. PubMed ID: 34423812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone ingrowth into a porous coated implant predicted by a mechano-regulatory tissue differentiation algorithm.
    Liu X; Niebur GL
    Biomech Model Mechanobiol; 2008 Aug; 7(4):335-44. PubMed ID: 17701434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of functionally graded pores on bone ingrowth in cementless hip prosthesis: a finite element study using mechano-regulatory algorithm.
    Tarlochan F; Mehboob H; Mehboob A; Chang SH
    Biomech Model Mechanobiol; 2018 Jun; 17(3):701-716. PubMed ID: 29168071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A macro-micro FE and ANN framework to assess site-specific bone ingrowth around the porous beaded-coated implant: an example with BOX® tibial implant for total ankle replacement.
    Minku ; Ghosh R
    Med Biol Eng Comput; 2024 Jun; 62(6):1639-1654. PubMed ID: 38321323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone remodelling around cementless composite acetabular components: the effects of implant geometry and implant-bone interfacial conditions.
    Ghosh R; Gupta S
    J Mech Behav Biomed Mater; 2014 Apr; 32():257-269. PubMed ID: 24508712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of mechanoregulatory models to simulate peri-implant tissue formation in an in vivo bone chamber.
    Geris L; Vandamme K; Naert I; Vander Sloten J; Duyck J; Van Oosterwyck H
    J Biomech; 2008; 41(1):145-54. PubMed ID: 17706229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of primary stability on load transfer and bone remodelling within the uncemented resurfaced femur.
    Pal B; Gupta S
    Proc Inst Mech Eng H; 2011 Jun; 225(6):549-61. PubMed ID: 22034739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of bone ingrowth into cobalt chrome sphere and titanium fiber mesh porous coated cementless canine acetabular components.
    Jasty M; Bragdon CR; Haire T; Mulroy RD; Harris WH
    J Biomed Mater Res; 1993 May; 27(5):639-44. PubMed ID: 8314816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tissue differentiation around a short stemmed metaphyseal loading implant employing a modified mechanoregulatory algorithm: a finite element study.
    Puthumanapully PK; Browne M
    J Orthop Res; 2011 May; 29(5):787-94. PubMed ID: 21437960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone remodelling around uncemented metallic and ceramic acetabular components.
    Ghosh R; Mukherjee K; Gupta S
    Proc Inst Mech Eng H; 2013 May; 227(5):490-502. PubMed ID: 23637259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induction of bone ingrowth from acetabular defects to a porous surface with OP-1.
    Barrack RL; Cook SD; Patrón LP; Salkeld SL; Szuszczewicz E; Whitecloud TS
    Clin Orthop Relat Res; 2003 Dec; (417):41-9. PubMed ID: 14646701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contact finite element stress analysis of porous ingrowth acetabular cup implantation, ingrowth, and loosening.
    Rapperport DJ; Carter DR; Schurman DJ
    J Orthop Res; 1987; 5(4):548-61. PubMed ID: 3681529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward a method to simulate the process of bone ingrowth in cementless THA using finite element method.
    Tarala M; Janssen D; Verdonschot N
    Med Eng Phys; 2013 Apr; 35(4):543-8. PubMed ID: 23195851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tissue growth into porous-coated acetabular components in 42 patients. Effects of adjunct fixation.
    Cook SD; Thomas KA; Barrack RL; Whitecloud TS
    Clin Orthop Relat Res; 1992 Oct; (283):163-70. PubMed ID: 1395241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cortical and interfacial bone changes around a non-cemented hip implant: simulations using a combined strain/damage remodelling algorithm.
    Scannell PT; Prendergast PJ
    Med Eng Phys; 2009 May; 31(4):477-88. PubMed ID: 19188086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation of bony ingrowth to the distribution of stress and strain parameters surrounding a porous-coated implant.
    Qin YX; McLeod KJ; Guilak F; Chiang FP; Rubin CT
    J Orthop Res; 1996 Nov; 14(6):862-70. PubMed ID: 8982127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.