BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 27255487)

  • 1. Drug Safety Monitoring in Children: Performance of Signal Detection Algorithms and Impact of Age Stratification.
    Osokogu OU; Dodd C; Pacurariu A; Kaguelidou F; Weibel D; Sturkenboom MC
    Drug Saf; 2016 Sep; 39(9):873-81. PubMed ID: 27255487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of New Signal Detection Methods for Web Query Log Data Compared to Signal Detection Algorithms Used With FAERS.
    Colilla S; Tov EY; Zhang L; Kurzinger ML; Tcherny-Lessenot S; Penfornis C; Jen S; Gonzalez DS; Caubel P; Welsh S; Juhaeri J
    Drug Saf; 2017 May; 40(5):399-408. PubMed ID: 28155198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of stratification on adverse drug reaction surveillance.
    Hopstadius J; Norén GN; Bate A; Edwards IR
    Drug Saf; 2008; 31(11):1035-48. PubMed ID: 18840023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Commonality of drug-associated adverse events detected by 4 commonly used data mining algorithms.
    Sakaeda T; Kadoyama K; Minami K; Okuno Y
    Int J Med Sci; 2014; 11(5):461-5. PubMed ID: 24688309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of statistical signal detection methods within and across spontaneous reporting databases.
    Candore G; Juhlin K; Manlik K; Thakrar B; Quarcoo N; Seabroke S; Wisniewski A; Slattery J
    Drug Saf; 2015 Jun; 38(6):577-87. PubMed ID: 25899605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential use of data-mining algorithms for the detection of 'surprise' adverse drug reactions.
    Hauben M; Horn S; Reich L
    Drug Saf; 2007; 30(2):143-55. PubMed ID: 17253879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of stratification on data mining in the US Vaccine Adverse Event Reporting System (VAERS).
    Woo EJ; Ball R; Burwen DR; Braun MM
    Drug Saf; 2008; 31(8):667-74. PubMed ID: 18636785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pediatric Drug Safety Surveillance in FDA-AERS: A Description of Adverse Events from GRiP Project.
    de Bie S; Ferrajolo C; Straus SM; Verhamme KM; Bonhoeffer J; Wong IC; Sturkenboom MC;
    PLoS One; 2015; 10(6):e0130399. PubMed ID: 26090678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring the impact of design criteria for reference sets on performance evaluation of signal detection algorithms: The case of drug-drug interactions.
    Kontsioti E; Maskell S; Pirmohamed M
    Pharmacoepidemiol Drug Saf; 2023 Aug; 32(8):832-844. PubMed ID: 36916014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel Adverse Events of Iloperidone: A Disproportionality Analysis in US Food and Drug Administration Adverse Event Reporting System (FAERS) Database.
    Subeesh V; Maheswari E; Singh H; Beulah TE; Swaroop AM
    Curr Drug Saf; 2019; 14(1):21-26. PubMed ID: 30362421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative performance of two quantitative safety signalling methods: implications for use in a pharmacovigilance department.
    Almenoff JS; LaCroix KK; Yuen NA; Fram D; DuMouchel W
    Drug Saf; 2006; 29(10):875-87. PubMed ID: 16970511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Comparison Study of Algorithms to Detect Drug-Adverse Event Associations: Frequentist, Bayesian, and Machine-Learning Approaches.
    Pham M; Cheng F; Ramachandran K
    Drug Saf; 2019 Jun; 42(6):743-750. PubMed ID: 30762164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Masking by vaccines in pediatric drug safety signal detection in the EudraVigilance database.
    Dodd C; Pacurariu A; Osokogu OU; Weibel D; Ferrajolo C; Vo DH; Becker B; Kors JA; Sturkenboom M
    Pharmacoepidemiol Drug Saf; 2018 Nov; 27(11):1249-1256. PubMed ID: 30066460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of screening algorithms and computer systems to efficiently signal higher-than-expected combinations of drugs and events in the US FDA's spontaneous reports database.
    Szarfman A; Machado SG; O'Neill RT
    Drug Saf; 2002; 25(6):381-92. PubMed ID: 12071774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Triptans and serious adverse vascular events: data mining of the FDA Adverse Event Reporting System database.
    Roberto G; Piccinni C; D'Alessandro R; Poluzzi E
    Cephalalgia; 2014 Jan; 34(1):5-13. PubMed ID: 23921799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A characterization and disproportionality analysis of medication error related adverse events reported to the FAERS database.
    Carnovale C; Mazhar F; Pozzi M; Gentili M; Clementi E; Radice S
    Expert Opin Drug Saf; 2018 Dec; 17(12):1161-1169. PubMed ID: 30451017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of database profile variation on drug safety assessment: an analysis of spontaneous adverse event reports of Japanese cases.
    Nomura K; Takahashi K; Hinomura Y; Kawaguchi G; Matsushita Y; Marui H; Anzai T; Hashiguchi M; Mochizuki M
    Drug Des Devel Ther; 2015; 9():3031-41. PubMed ID: 26109846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparing data mining methods on the VAERS database.
    Banks D; Woo EJ; Burwen DR; Perucci P; Braun MM; Ball R
    Pharmacoepidemiol Drug Saf; 2005 Sep; 14(9):601-9. PubMed ID: 15954077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance of pharmacovigilance signal-detection algorithms for the FDA adverse event reporting system.
    Harpaz R; DuMouchel W; LePendu P; Bauer-Mehren A; Ryan P; Shah NH
    Clin Pharmacol Ther; 2013 Jun; 93(6):539-46. PubMed ID: 23571771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suspected adverse drug reactions reported for Brazilian children: cross-sectional study.
    Lima EDC; Matos GC; Vieira JML; Gonçalves ICDCR; Cabral LM; Turner MA
    J Pediatr (Rio J); 2019; 95(6):682-688. PubMed ID: 30030984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.