BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 27255688)

  • 1. Phase transformations during processing and in vitro degradation of porous calcium polyphosphates.
    Hu Y; Pilliar R; Grynpas M; Kandel R; Werner-Zwanziger U; Filiaggi M
    J Mater Sci Mater Med; 2016 Jul; 27(7):117. PubMed ID: 27255688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peculiarities in thermal evolution of precipitated amorphous calcium phosphates with an initial Ca/P ratio of 1:1.
    Zyman Z; Epple M; Goncharenko A; Rokhmistrov D; Prymak O; Loza K
    J Mater Sci Mater Med; 2017 Mar; 28(3):52. PubMed ID: 28197825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Effect of processing parameters on the degradation of calcium polyphosphate bioceramic for bone tissue scaffolds].
    Qin Y; Yu X; Chen Y; Ding Y; Wan C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Aug; 24(4):794-7. PubMed ID: 17899747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porous calcium polyphosphate bone substitutes: additive manufacturing versus conventional gravity sinter processing-effect on structure and mechanical properties.
    Hu Y; Shanjani Y; Toyserkani E; Grynpas M; Wang R; Pilliar R
    J Biomed Mater Res B Appl Biomater; 2014 Feb; 102(2):274-83. PubMed ID: 23997039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Porous calcium polyphosphate scaffolds for bone substitute applications -- in vitro characterization.
    Pilliar RM; Filiaggi MJ; Wells JD; Grynpas MD; Kandel RA
    Biomaterials; 2001 May; 22(9):963-72. PubMed ID: 11311015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Structure and performance of calcium polyphosphate for bone tissue engineering].
    Qiu K; Chen Y; Zhang Q; Su H; Yu X; Wan C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Dec; 23(6):1271-4. PubMed ID: 17228724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of porous calcium polyphosphate implants by solid freeform fabrication: a study of processing parameters and in vitro degradation characteristics.
    Porter NL; Pilliar RM; Grynpas MD
    J Biomed Mater Res; 2001 Sep; 56(4):504-15. PubMed ID: 11400128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advanced bioceramic composite for bone tissue engineering: design principles and structure-bioactivity relationship.
    El-Ghannam AR
    J Biomed Mater Res A; 2004 Jun; 69(3):490-501. PubMed ID: 15127396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of tricalcium phosphate/calcium pyrophosphate structures via rapid prototyping.
    Gbureck U; Hölzel T; Biermann I; Barralet JE; Grover LM
    J Mater Sci Mater Med; 2008 Apr; 19(4):1559-63. PubMed ID: 18236137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone substitute: transforming beta-tricalcium phosphate porous scaffolds into monetite.
    Galea LG; Bohner M; Lemaître J; Kohler T; Müller R
    Biomaterials; 2008; 29(24-25):3400-7. PubMed ID: 18495242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystallized nano-sized alpha-tricalcium phosphate from amorphous calcium phosphate: microstructure, cementation and cell response.
    Vecbiskena L; Gross KA; Riekstina U; Yang TC
    Biomed Mater; 2015 Apr; 10(2):025009. PubMed ID: 25886478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium carbonate-calcium phosphate mixed cement compositions for bone reconstruction.
    Combes C; Bareille R; Rey C
    J Biomed Mater Res A; 2006 Nov; 79(2):318-28. PubMed ID: 16817210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solid freeform fabrication of porous calcium polyphosphate structures for bone substitute applications: in vivo studies.
    Shanjani Y; Hu Y; Toyserkani E; Grynpas M; Kandel RA; Pilliar RM
    J Biomed Mater Res B Appl Biomater; 2013 Aug; 101(6):972-80. PubMed ID: 23529933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Structure characterization of calcium polyphosphate bioceramics during sintering process].
    Gao X; Guo L; Li H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Dec; 21(6):991-4. PubMed ID: 15646349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of apatitic calcium phosphates in a Na-K-phosphate solution of pH 7.4.
    Tas AC; Aldinger F
    J Mater Sci Mater Med; 2005 Feb; 16(2):167-74. PubMed ID: 15744606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of powder properties on sintering, microstructure, mechanical strength and degradability of beta-tricalcium phosphate/calcium silicate composite bioceramics.
    Lin K; Chang J; Shen R
    Biomed Mater; 2009 Dec; 4(6):065009. PubMed ID: 19966383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nuclear magnetic resonance spectroscopy of bone substitutes.
    Legrand AP; Sfihi H; Bouler JM
    Bone; 1999 Aug; 25(2 Suppl):103S-105S. PubMed ID: 10458287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calorimetry investigations of milled α-tricalcium phosphate (α-TCP) powders to determine the formation enthalpies of α-TCP and X-ray amorphous tricalcium phosphate.
    Hurle K; Neubauer J; Bohner M; Doebelin N; Goetz-Neunhoeffer F
    Acta Biomater; 2015 Sep; 23():338-346. PubMed ID: 26026302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low temperature method for the production of calcium phosphate fillers.
    Calafiori AR; Marotta M; Nastro A; Martino G
    Biomed Eng Online; 2004 Mar; 3(1):8. PubMed ID: 15035671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium phosphate bioceramics fabricated from extracted human teeth for tooth tissue engineering.
    Lim KT; Suh JD; Kim J; Choung PH; Chung JH
    J Biomed Mater Res B Appl Biomater; 2011 Nov; 99(2):399-411. PubMed ID: 21953824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.