BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 27255792)

  • 21. The Role of XPG in Processing (CAG)n/(CTG)n DNA Hairpins.
    Hou C; Zhang T; Tian L; Huang J; Gu L; Li GM
    Cell Biosci; 2011 Mar; 1(1):11. PubMed ID: 21711735
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crosstalk between MSH2-MSH3 and polβ promotes trinucleotide repeat expansion during base excision repair.
    Lai Y; Budworth H; Beaver JM; Chan NL; Zhang Z; McMurray CT; Liu Y
    Nat Commun; 2016 Aug; 7():12465. PubMed ID: 27546332
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Expansion and deletion of triplet repeat sequences in Escherichia coli occur on the leading strand of DNA replication.
    Iyer RR; Wells RD
    J Biol Chem; 1999 Feb; 274(6):3865-77. PubMed ID: 9920942
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-Resolution NMR Structures of Intrastrand Hairpins Formed by CTG Trinucleotide Repeats.
    Wan L; He A; Li J; Guo P; Han D
    ACS Chem Neurosci; 2024 Feb; 15(4):868-876. PubMed ID: 38319692
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Human MSH2 binds to trinucleotide repeat DNA structures associated with neurodegenerative diseases.
    Pearson CE; Ewel A; Acharya S; Fishel RA; Sinden RR
    Hum Mol Genet; 1997 Jul; 6(7):1117-23. PubMed ID: 9215683
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proliferating cell nuclear antigen prevents trinucleotide repeat expansions by promoting repeat deletion and hairpin removal.
    Beaver JM; Lai Y; Rolle SJ; Liu Y
    DNA Repair (Amst); 2016 Dec; 48():17-29. PubMed ID: 27793507
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MutSβ and histone deacetylase complexes promote expansions of trinucleotide repeats in human cells.
    Gannon AM; Frizzell A; Healy E; Lahue RS
    Nucleic Acids Res; 2012 Nov; 40(20):10324-33. PubMed ID: 22941650
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Base excision repair of oxidative DNA damage coupled with removal of a CAG repeat hairpin attenuates trinucleotide repeat expansion.
    Xu M; Lai Y; Torner J; Zhang Y; Zhang Z; Liu Y
    Nucleic Acids Res; 2014 Apr; 42(6):3675-91. PubMed ID: 24423876
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DNA polymerase III proofreading mutants enhance the expansion and deletion of triplet repeat sequences in Escherichia coli.
    Iyer RR; Pluciennik A; Rosche WA; Sinden RR; Wells RD
    J Biol Chem; 2000 Jan; 275(3):2174-84. PubMed ID: 10636923
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure of even/odd trinucleotide repeat sequences modulates persistence of non-B conformations and conversion to duplex.
    Figueroa AA; Cattie D; Delaney S
    Biochemistry; 2011 May; 50(21):4441-50. PubMed ID: 21526744
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Frustration Between Preferred States of Complementary Trinucleotide Repeat DNA Hairpins Anticorrelates with Expansion Disease Propensity.
    Xu P; Zhang J; Pan F; Mahn C; Roland C; Sagui C; Weninger K
    J Mol Biol; 2023 May; 435(10):168086. PubMed ID: 37024008
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular dynamics studies of trinucleotide repeat DNA involved in neurodegenerative disorders.
    Jithesh PV; Singh P; Joshi R
    J Biomol Struct Dyn; 2001 Dec; 19(3):479-95. PubMed ID: 11790146
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Involvement of the nucleotide excision repair protein UvrA in instability of CAG*CTG repeat sequences in Escherichia coli.
    Oussatcheva EA; Hashem VI; Zou Y; Sinden RR; Potaman VN
    J Biol Chem; 2001 Aug; 276(33):30878-84. PubMed ID: 11413147
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Weak strand displacement activity enables human DNA polymerase beta to expand CAG/CTG triplet repeats at strand breaks.
    Hartenstine MJ; Goodman MF; Petruska J
    J Biol Chem; 2002 Nov; 277(44):41379-89. PubMed ID: 12196536
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The nucleotide sequence, DNA damage location, and protein stoichiometry influence the base excision repair outcome at CAG/CTG repeats.
    Goula AV; Pearson CE; Della Maria J; Trottier Y; Tomkinson AE; Wilson DM; Merienne K
    Biochemistry; 2012 May; 51(18):3919-32. PubMed ID: 22497302
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural roles of CTG repeats in slippage expansion during DNA replication.
    Chi LM; Lam SL
    Nucleic Acids Res; 2005; 33(5):1604-17. PubMed ID: 15767285
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Instability of CTG repeats is governed by the position of a DNA base lesion through base excision repair.
    Lai Y; Xu M; Zhang Z; Liu Y
    PLoS One; 2013; 8(2):e56960. PubMed ID: 23468897
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oligodeoxynucleotide binding to (CTG) · (CAG) microsatellite repeats inhibits replication fork stalling, hairpin formation, and genome instability.
    Liu G; Chen X; Leffak M
    Mol Cell Biol; 2013 Feb; 33(3):571-81. PubMed ID: 23166299
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Slipped (CTG)*(CAG) repeats can be correctly repaired, escape repair or undergo error-prone repair.
    Panigrahi GB; Lau R; Montgomery SE; Leonard MR; Pearson CE
    Nat Struct Mol Biol; 2005 Aug; 12(8):654-62. PubMed ID: 16025129
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Trinucleotide repeat expansions catalyzed by human cell-free extracts.
    Stevens JR; Lahue EE; Li GM; Lahue RS
    Cell Res; 2013 Apr; 23(4):565-72. PubMed ID: 23337586
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.