BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 27255957)

  • 1. Using the relationship between brain tissue regional saturation of oxygen and mean arterial pressure to determine the optimal mean arterial pressure in patients following cardiac arrest: A pilot proof-of-concept study.
    Sekhon MS; Smielewski P; Bhate TD; Brasher PM; Foster D; Menon DK; Gupta AK; Czosnyka M; Henderson WR; Gin K; Wong G; Griesdale DE
    Resuscitation; 2016 Sep; 106():120-5. PubMed ID: 27255957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lack of agreement between optimal mean arterial pressure determination using pressure reactivity index versus cerebral oximetry index in hypoxic ischemic brain injury after cardiac arrest.
    Hoiland RL; Sekhon MS; Cardim D; Wood MD; Gooderham P; Foster D; Griesdale DE
    Resuscitation; 2020 Jul; 152():184-191. PubMed ID: 32229218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of Near-Infrared Spectroscopy for Monitoring Cerebral Autoregulation in Comatose Patients.
    Rivera-Lara L; Geocadin R; Zorrilla-Vaca A; Healy R; Radzik BR; Palmisano C; Mirski M; Ziai WC; Hogue C
    Neurocrit Care; 2017 Dec; 27(3):362-369. PubMed ID: 28664392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deviations from NIRS-derived optimal blood pressure are associated with worse outcomes after pediatric cardiac arrest.
    Kirschen MP; Majmudar T; Beaulieu F; Burnett R; Shaik M; Morgan RW; Baker W; Ko T; Balu R; Agarwal K; Lourie K; Sutton R; Kilbaugh T; Diaz-Arrastia R; Berg R; Topjian A
    Resuscitation; 2021 Nov; 168():110-118. PubMed ID: 34600027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Burden of Brain Hypoxia and Optimal Mean Arterial Pressure in Patients With Hypoxic Ischemic Brain Injury After Cardiac Arrest.
    Sekhon MS; Gooderham P; Menon DK; Brasher PMA; Foster D; Cardim D; Czosnyka M; Smielewski P; Gupta AK; Ainslie PN; Griesdale DEG
    Crit Care Med; 2019 Jul; 47(7):960-969. PubMed ID: 30889022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A pilot study examining the role of regional cerebral oxygen saturation monitoring as a marker of return of spontaneous circulation in shockable (VF/VT) and non-shockable (PEA/Asystole) causes of cardiac arrest.
    Ahn A; Nasir A; Malik H; D'Orazi F; Parnia S
    Resuscitation; 2013 Dec; 84(12):1713-6. PubMed ID: 23948447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of Optimal Arterial Pressure with Near-Infrared Spectroscopy in Traumatic Brain Injury Patients.
    Oshorov A; Savin I; Alexandrova E; Bragin D
    Adv Exp Med Biol; 2022; 1395():133-137. PubMed ID: 36527627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determining Optimal Mean Arterial Pressure After Cardiac Arrest: A Systematic Review.
    Rikhraj KJK; Wood MD; Hoiland RL; Thiara S; Griesdale DEG; Sekhon MS
    Neurocrit Care; 2021 Apr; 34(2):621-634. PubMed ID: 32572823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A pilot cohort study of cerebral autoregulation and 2-year neurodevelopmental outcomes in neonates with hypoxic-ischemic encephalopathy who received therapeutic hypothermia.
    Burton VJ; Gerner G; Cristofalo E; Chung SE; Jennings JM; Parkinson C; Koehler RC; Chavez-Valdez R; Johnston MV; Northington FJ; Lee JK
    BMC Neurol; 2015 Oct; 15():209. PubMed ID: 26486728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A feasibility study of cerebral oximetry monitoring during the post-resuscitation period in comatose patients following cardiac arrest.
    Ahn A; Yang J; Inigo-Santiago L; Parnia S
    Resuscitation; 2014 Apr; 85(4):522-6. PubMed ID: 24361675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microvascular Autoregulation in Skeletal Muscle Using Near-Infrared Spectroscopy and Derivation of Optimal Mean Arterial Pressure in the ICU: Pilot Study and Comparison With Cerebral Near-Infrared Spectroscopy.
    Mirsajadi A; Erickson D; Alias S; Froese L; Singh Sainbhi A; Gomez A; Majumdar R; Herath I; Wilson M; Zarychanski R; Zeiler FA; Mendelson AA;
    Crit Care Explor; 2024 Jul; 6(7):e1111. PubMed ID: 38904977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intraoperative monitoring of cerebrovascular autoregulation in infants and toddlers receiving major elective surgery to determine the individually optimal blood pressure - a pilot study.
    Iller M; Neunhoeffer F; Heimann L; Zipfel J; Schuhmann MU; Scherer S; Dietzel M; Fuchs J; Hofbeck M; Hieber S; Fideler F
    Front Pediatr; 2023; 11():1110453. PubMed ID: 36865688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regional cerebral saturation monitoring during withdrawal of life support until death.
    Genbrugge C; Eertmans W; Jans F; Boer W; Dens J; De Deyne C
    Resuscitation; 2017 Dec; 121():147-150. PubMed ID: 28750885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regional cerebral oxygen saturation after cardiac arrest in 60 patients--a prospective outcome study.
    Storm C; Leithner C; Krannich A; Wutzler A; Ploner CJ; Trenkmann L; von Rheinbarben S; Schroeder T; Luckenbach F; Nee J
    Resuscitation; 2014 Aug; 85(8):1037-41. PubMed ID: 24795284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerebral Autoregulation-Guided Optimal Blood Pressure in Sepsis-Associated Encephalopathy: A Case Series.
    Rosenblatt K; Walker KA; Goodson C; Olson E; Maher D; Brown CH; Nyquist P
    J Intensive Care Med; 2020 Dec; 35(12):1453-1464. PubMed ID: 30760173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Near-Infrared Spectroscopy to Assess Cerebral Autoregulation and Optimal Mean Arterial Pressure in Patients With Hypoxic-Ischemic Brain Injury: A Prospective Multicenter Feasibility Study.
    Griesdale DEG; Sekhon MS; Wood MD; Cardim D; Brasher PMA; McCredie V; Sirounis D; Foster D; Krasnogolova Y; Smielewski P; Scales DC; Ainslie PN; Menon DK; Boyd JG; Field TS; Dorian P;
    Crit Care Explor; 2020 Oct; 2(10):e0217. PubMed ID: 33063026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deviations from PRx-derived optimal blood pressure are associated with mortality after cardiac arrest.
    Kirschen MP; Majmudar T; Diaz-Arrastia R; Berg R; Abella BS; Topjian A; Balu R
    Resuscitation; 2022 Jun; 175():81-87. PubMed ID: 35276311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous Monitoring of Cerebral Autoregulation in Adults Supported by Extracorporeal Membrane Oxygenation.
    Zhang LQ; Chang H; Kalra A; Humayun M; Rosenblatt KR; Shah VA; Geocadin RG; Brown CH; Kim BS; Whitman GJR; Rivera-Lara L; Cho SM
    Res Sq; 2023 Sep; ():. PubMed ID: 37790309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A pilot study of cerebrovascular reactivity autoregulation after pediatric cardiac arrest.
    Lee JK; Brady KM; Chung SE; Jennings JM; Whitaker EE; Aganga D; Easley RB; Heitmiller K; Jamrogowicz JL; Larson AC; Lee JH; Jordan LC; Hogue CW; Lehmann CU; Bembea MM; Hunt EA; Koehler RC; Shaffner DH
    Resuscitation; 2014 Oct; 85(10):1387-93. PubMed ID: 25046743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cerebral autoregulation in the operating room and intensive care unit after cardiac surgery.
    Nakano M; Nomura Y; Whitman G; Sussman M; Schena S; Kilic A; Choi CW; Akiyoshi K; Neufeld KJ; Lawton J; Colantuoni E; Yamaguchi A; Wen M; Smielewski P; Brady K; Bush B; Hogue CW; Brown CH
    Br J Anaesth; 2021 May; 126(5):967-974. PubMed ID: 33741137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.