These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
567 related articles for article (PubMed ID: 27256364)
1. Gene correction in patient-specific iPSCs for therapy development and disease modeling. Jang YY; Ye Z Hum Genet; 2016 Sep; 135(9):1041-58. PubMed ID: 27256364 [TBL] [Abstract][Full Text] [Related]
2. A Universal Approach to Correct Various HBB Gene Mutations in Human Stem Cells for Gene Therapy of Beta-Thalassemia and Sickle Cell Disease. Cai L; Bai H; Mahairaki V; Gao Y; He C; Wen Y; Jin YC; Wang Y; Pan RL; Qasba A; Ye Z; Cheng L Stem Cells Transl Med; 2018 Jan; 7(1):87-97. PubMed ID: 29164808 [TBL] [Abstract][Full Text] [Related]
3. Production of Gene-Corrected Adult Beta Globin Protein in Human Erythrocytes Differentiated from Patient iPSCs After Genome Editing of the Sickle Point Mutation. Huang X; Wang Y; Yan W; Smith C; Ye Z; Wang J; Gao Y; Mendelsohn L; Cheng L Stem Cells; 2015 May; 33(5):1470-9. PubMed ID: 25702619 [TBL] [Abstract][Full Text] [Related]
4. One-step genetic correction of hemoglobin E/beta-thalassemia patient-derived iPSCs by the CRISPR/Cas9 system. Wattanapanitch M; Damkham N; Potirat P; Trakarnsanga K; Janan M; U-Pratya Y; Kheolamai P; Klincumhom N; Issaragrisil S Stem Cell Res Ther; 2018 Feb; 9(1):46. PubMed ID: 29482624 [TBL] [Abstract][Full Text] [Related]
5. The Combination of CRISPR/Cas9 and iPSC Technologies in the Gene Therapy of Human β-thalassemia in Mice. Ou Z; Niu X; He W; Chen Y; Song B; Xian Y; Fan D; Tang D; Sun X Sci Rep; 2016 Sep; 6():32463. PubMed ID: 27581487 [TBL] [Abstract][Full Text] [Related]
6. Improved hematopoietic differentiation efficiency of gene-corrected beta-thalassemia induced pluripotent stem cells by CRISPR/Cas9 system. Song B; Fan Y; He W; Zhu D; Niu X; Wang D; Ou Z; Luo M; Sun X Stem Cells Dev; 2015 May; 24(9):1053-65. PubMed ID: 25517294 [TBL] [Abstract][Full Text] [Related]
7. CRISPR/Cas9 system and its applications in human hematopoietic cells. Hu X Blood Cells Mol Dis; 2016 Nov; 62():6-12. PubMed ID: 27736664 [TBL] [Abstract][Full Text] [Related]
8. In situ genetic correction of the sickle cell anemia mutation in human induced pluripotent stem cells using engineered zinc finger nucleases. Sebastiano V; Maeder ML; Angstman JF; Haddad B; Khayter C; Yeo DT; Goodwin MJ; Hawkins JS; Ramirez CL; Batista LF; Artandi SE; Wernig M; Joung JK Stem Cells; 2011 Nov; 29(11):1717-26. PubMed ID: 21898685 [TBL] [Abstract][Full Text] [Related]
9. Modeling of hemophilia A using patient-specific induced pluripotent stem cells derived from urine cells. Jia B; Chen S; Zhao Z; Liu P; Cai J; Qin D; Du J; Wu C; Chen Q; Cai X; Zhang H; Yu Y; Pei D; Zhong M; Pan G Life Sci; 2014 Jul; 108(1):22-9. PubMed ID: 24834837 [TBL] [Abstract][Full Text] [Related]
10. Naïve Induced Pluripotent Stem Cells Generated From β-Thalassemia Fibroblasts Allow Efficient Gene Correction With CRISPR/Cas9. Yang Y; Zhang X; Yi L; Hou Z; Chen J; Kou X; Zhao Y; Wang H; Sun XF; Jiang C; Wang Y; Gao S Stem Cells Transl Med; 2016 Jan; 5(1):8-19. PubMed ID: 26676643 [TBL] [Abstract][Full Text] [Related]
11. Gene and Cell Therapy for β-Thalassemia and Sickle Cell Disease with Induced Pluripotent Stem Cells (iPSCs): The Next Frontier. Papapetrou EP Adv Exp Med Biol; 2017; 1013():219-240. PubMed ID: 29127683 [TBL] [Abstract][Full Text] [Related]
12. TALEN-mediated generation and genetic correction of disease-specific human induced pluripotent stem cells. Ramalingam S; Annaluru N; Kandavelou K; Chandrasegaran S Curr Gene Ther; 2014; 14(6):461-72. PubMed ID: 25245091 [TBL] [Abstract][Full Text] [Related]
13. Both TALENs and CRISPR/Cas9 directly target the HBB IVS2-654 (C > T) mutation in β-thalassemia-derived iPSCs. Xu P; Tong Y; Liu XZ; Wang TT; Cheng L; Wang BY; Lv X; Huang Y; Liu DP Sci Rep; 2015 Jul; 5():12065. PubMed ID: 26156589 [TBL] [Abstract][Full Text] [Related]
14. Genome editing in pluripotent stem cells: research and therapeutic applications. Deleidi M; Yu C Biochem Biophys Res Commun; 2016 May; 473(3):665-74. PubMed ID: 26930470 [TBL] [Abstract][Full Text] [Related]
15. RNA-Generated and Gene-Edited Induced Pluripotent Stem Cells for Disease Modeling and Therapy. Kehler J; Greco M; Martino V; Pachiappan M; Yokoe H; Chen A; Yang M; Auerbach J; Jessee J; Gotte M; Milanesi L; Albertini A; Bellipanni G; Zucchi I; Reinbold RA; Giordano A J Cell Physiol; 2017 Jun; 232(6):1262-1269. PubMed ID: 27631155 [TBL] [Abstract][Full Text] [Related]
16. Application of induced pluripotent stem cell technology for the investigation of hematological disorders. Dolatshad H; Tatwavedi D; Ahmed D; Tegethoff JF; Boultwood J; Pellagatti A Adv Biol Regul; 2019 Jan; 71():19-33. PubMed ID: 30341008 [TBL] [Abstract][Full Text] [Related]
17. Induced pluripotent stem cells in research and therapy. Teoh HK; Cheong SK Malays J Pathol; 2012 Jun; 34(1):1-13. PubMed ID: 22870592 [TBL] [Abstract][Full Text] [Related]
18. Site-Specific Genome Engineering in Human Pluripotent Stem Cells. Merkert S; Martin U Int J Mol Sci; 2016 Jun; 17(7):. PubMed ID: 27347935 [TBL] [Abstract][Full Text] [Related]
19. Site-specific genome editing for correction of induced pluripotent stem cells derived from dominant dystrophic epidermolysis bullosa. Shinkuma S; Guo Z; Christiano AM Proc Natl Acad Sci U S A; 2016 May; 113(20):5676-81. PubMed ID: 27143720 [TBL] [Abstract][Full Text] [Related]
20. Induced Pluripotency and Gene Editing in Disease Modelling: Perspectives and Challenges. Seah YF; El Farran CA; Warrier T; Xu J; Loh YH Int J Mol Sci; 2015 Dec; 16(12):28614-34. PubMed ID: 26633382 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]