BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

567 related articles for article (PubMed ID: 27256364)

  • 1. Gene correction in patient-specific iPSCs for therapy development and disease modeling.
    Jang YY; Ye Z
    Hum Genet; 2016 Sep; 135(9):1041-58. PubMed ID: 27256364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Universal Approach to Correct Various HBB Gene Mutations in Human Stem Cells for Gene Therapy of Beta-Thalassemia and Sickle Cell Disease.
    Cai L; Bai H; Mahairaki V; Gao Y; He C; Wen Y; Jin YC; Wang Y; Pan RL; Qasba A; Ye Z; Cheng L
    Stem Cells Transl Med; 2018 Jan; 7(1):87-97. PubMed ID: 29164808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of Gene-Corrected Adult Beta Globin Protein in Human Erythrocytes Differentiated from Patient iPSCs After Genome Editing of the Sickle Point Mutation.
    Huang X; Wang Y; Yan W; Smith C; Ye Z; Wang J; Gao Y; Mendelsohn L; Cheng L
    Stem Cells; 2015 May; 33(5):1470-9. PubMed ID: 25702619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-step genetic correction of hemoglobin E/beta-thalassemia patient-derived iPSCs by the CRISPR/Cas9 system.
    Wattanapanitch M; Damkham N; Potirat P; Trakarnsanga K; Janan M; U-Pratya Y; Kheolamai P; Klincumhom N; Issaragrisil S
    Stem Cell Res Ther; 2018 Feb; 9(1):46. PubMed ID: 29482624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Combination of CRISPR/Cas9 and iPSC Technologies in the Gene Therapy of Human β-thalassemia in Mice.
    Ou Z; Niu X; He W; Chen Y; Song B; Xian Y; Fan D; Tang D; Sun X
    Sci Rep; 2016 Sep; 6():32463. PubMed ID: 27581487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved hematopoietic differentiation efficiency of gene-corrected beta-thalassemia induced pluripotent stem cells by CRISPR/Cas9 system.
    Song B; Fan Y; He W; Zhu D; Niu X; Wang D; Ou Z; Luo M; Sun X
    Stem Cells Dev; 2015 May; 24(9):1053-65. PubMed ID: 25517294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR/Cas9 system and its applications in human hematopoietic cells.
    Hu X
    Blood Cells Mol Dis; 2016 Nov; 62():6-12. PubMed ID: 27736664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ genetic correction of the sickle cell anemia mutation in human induced pluripotent stem cells using engineered zinc finger nucleases.
    Sebastiano V; Maeder ML; Angstman JF; Haddad B; Khayter C; Yeo DT; Goodwin MJ; Hawkins JS; Ramirez CL; Batista LF; Artandi SE; Wernig M; Joung JK
    Stem Cells; 2011 Nov; 29(11):1717-26. PubMed ID: 21898685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling of hemophilia A using patient-specific induced pluripotent stem cells derived from urine cells.
    Jia B; Chen S; Zhao Z; Liu P; Cai J; Qin D; Du J; Wu C; Chen Q; Cai X; Zhang H; Yu Y; Pei D; Zhong M; Pan G
    Life Sci; 2014 Jul; 108(1):22-9. PubMed ID: 24834837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Naïve Induced Pluripotent Stem Cells Generated From β-Thalassemia Fibroblasts Allow Efficient Gene Correction With CRISPR/Cas9.
    Yang Y; Zhang X; Yi L; Hou Z; Chen J; Kou X; Zhao Y; Wang H; Sun XF; Jiang C; Wang Y; Gao S
    Stem Cells Transl Med; 2016 Jan; 5(1):8-19. PubMed ID: 26676643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene and Cell Therapy for β-Thalassemia and Sickle Cell Disease with Induced Pluripotent Stem Cells (iPSCs): The Next Frontier.
    Papapetrou EP
    Adv Exp Med Biol; 2017; 1013():219-240. PubMed ID: 29127683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TALEN-mediated generation and genetic correction of disease-specific human induced pluripotent stem cells.
    Ramalingam S; Annaluru N; Kandavelou K; Chandrasegaran S
    Curr Gene Ther; 2014; 14(6):461-72. PubMed ID: 25245091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Both TALENs and CRISPR/Cas9 directly target the HBB IVS2-654 (C > T) mutation in β-thalassemia-derived iPSCs.
    Xu P; Tong Y; Liu XZ; Wang TT; Cheng L; Wang BY; Lv X; Huang Y; Liu DP
    Sci Rep; 2015 Jul; 5():12065. PubMed ID: 26156589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome editing in pluripotent stem cells: research and therapeutic applications.
    Deleidi M; Yu C
    Biochem Biophys Res Commun; 2016 May; 473(3):665-74. PubMed ID: 26930470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA-Generated and Gene-Edited Induced Pluripotent Stem Cells for Disease Modeling and Therapy.
    Kehler J; Greco M; Martino V; Pachiappan M; Yokoe H; Chen A; Yang M; Auerbach J; Jessee J; Gotte M; Milanesi L; Albertini A; Bellipanni G; Zucchi I; Reinbold RA; Giordano A
    J Cell Physiol; 2017 Jun; 232(6):1262-1269. PubMed ID: 27631155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of induced pluripotent stem cell technology for the investigation of hematological disorders.
    Dolatshad H; Tatwavedi D; Ahmed D; Tegethoff JF; Boultwood J; Pellagatti A
    Adv Biol Regul; 2019 Jan; 71():19-33. PubMed ID: 30341008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induced pluripotent stem cells in research and therapy.
    Teoh HK; Cheong SK
    Malays J Pathol; 2012 Jun; 34(1):1-13. PubMed ID: 22870592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-Specific Genome Engineering in Human Pluripotent Stem Cells.
    Merkert S; Martin U
    Int J Mol Sci; 2016 Jun; 17(7):. PubMed ID: 27347935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site-specific genome editing for correction of induced pluripotent stem cells derived from dominant dystrophic epidermolysis bullosa.
    Shinkuma S; Guo Z; Christiano AM
    Proc Natl Acad Sci U S A; 2016 May; 113(20):5676-81. PubMed ID: 27143720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induced Pluripotency and Gene Editing in Disease Modelling: Perspectives and Challenges.
    Seah YF; El Farran CA; Warrier T; Xu J; Loh YH
    Int J Mol Sci; 2015 Dec; 16(12):28614-34. PubMed ID: 26633382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.