BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

568 related articles for article (PubMed ID: 27256364)

  • 61. Recent technological updates and clinical applications of induced pluripotent stem cells.
    Diecke S; Jung SM; Lee J; Ju JH
    Korean J Intern Med; 2014 Sep; 29(5):547-57. PubMed ID: 25228828
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Modeling Viral Infectious Diseases and Development of Antiviral Therapies Using Human Induced Pluripotent Stem Cell-Derived Systems.
    Trevisan M; Sinigaglia A; Desole G; Berto A; Pacenti M; Palù G; Barzon L
    Viruses; 2015 Jul; 7(7):3835-56. PubMed ID: 26184286
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Clinical translation of TALENS: Treating SCID-X1 by gene editing in iPSCs.
    Biffi A
    Cell Stem Cell; 2015 Apr; 16(4):348-9. PubMed ID: 25842973
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Recent Updates on Induced Pluripotent Stem Cells in Hematological Disorders.
    Wattanapanitch M
    Stem Cells Int; 2019; 2019():5171032. PubMed ID: 31191673
    [TBL] [Abstract][Full Text] [Related]  

  • 65. CRISPR/Cas9 and
    Muto V; Benigni F; Magliocca V; Borghi R; Flex E; Pallottini V; Rosa A; Compagnucci C; Tartaglia M
    Int J Mol Sci; 2023 Apr; 24(9):. PubMed ID: 37175696
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The emerging role of viral vectors as vehicles for DMD gene editing.
    Maggio I; Chen X; Gonçalves MA
    Genome Med; 2016 May; 8(1):59. PubMed ID: 27215286
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Genome editing using CRISPR-Cas9 to create the HPFH genotype in HSPCs: An approach for treating sickle cell disease and β-thalassemia.
    Ye L; Wang J; Tan Y; Beyer AI; Xie F; Muench MO; Kan YW
    Proc Natl Acad Sci U S A; 2016 Sep; 113(38):10661-5. PubMed ID: 27601644
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Efficient drug screening and gene correction for treating liver disease using patient-specific stem cells.
    Choi SM; Kim Y; Shim JS; Park JT; Wang RH; Leach SD; Liu JO; Deng C; Ye Z; Jang YY
    Hepatology; 2013 Jun; 57(6):2458-68. PubMed ID: 23325555
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Gene correction of human induced pluripotent stem cells repairs the cellular phenotype in pulmonary alveolar proteinosis.
    Lachmann N; Happle C; Ackermann M; Lüttge D; Wetzke M; Merkert S; Hetzel M; Kensah G; Jara-Avaca M; Mucci A; Skuljec J; Dittrich AM; Pfaff N; Brennig S; Schambach A; Steinemann D; Göhring G; Cantz T; Martin U; Schwerk N; Hansen G; Moritz T
    Am J Respir Crit Care Med; 2014 Jan; 189(2):167-82. PubMed ID: 24279725
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Induced pluripotent stem cells and their implication for regenerative medicine.
    Csobonyeiova M; Polak S; Koller J; Danisovic L
    Cell Tissue Bank; 2015 Jun; 16(2):171-80. PubMed ID: 25037593
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Genome Editing of Structural Variations: Modeling and Gene Correction.
    Park CY; Sung JJ; Kim DW
    Trends Biotechnol; 2016 Jul; 34(7):548-561. PubMed ID: 27016031
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Investigating pediatric disorders with induced pluripotent stem cells.
    Durbin MD; Cadar AG; Chun YW; Hong CC
    Pediatr Res; 2018 Oct; 84(4):499-508. PubMed ID: 30065271
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Microhomology-assisted scarless genome editing in human iPSCs.
    Kim SI; Matsumoto T; Kagawa H; Nakamura M; Hirohata R; Ueno A; Ohishi M; Sakuma T; Soga T; Yamamoto T; Woltjen K
    Nat Commun; 2018 Mar; 9(1):939. PubMed ID: 29507284
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Induced Pluripotent Stem Cells and Genome-Editing Tools in Determining Gene Function and Therapy for Inherited Retinal Disorders.
    Benati D; Leung A; Perdigao P; Toulis V; van der Spuy J; Recchia A
    Int J Mol Sci; 2022 Dec; 23(23):. PubMed ID: 36499601
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Efficient, footprint-free human iPSC genome editing by consolidation of Cas9/CRISPR and piggyBac technologies.
    Wang G; Yang L; Grishin D; Rios X; Ye LY; Hu Y; Li K; Zhang D; Church GM; Pu WT
    Nat Protoc; 2017 Jan; 12(1):88-103. PubMed ID: 27929521
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Modeling Human Severe Combined Immunodeficiency and Correction by CRISPR/Cas9-Enhanced Gene Targeting.
    Chang CW; Lai YS; Westin E; Khodadadi-Jamayran A; Pawlik KM; Lamb LS; Goldman FD; Townes TM
    Cell Rep; 2015 Sep; 12(10):1668-77. PubMed ID: 26321643
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Human iPSC Models to Study Orphan Diseases: Muscular Dystrophies.
    Xia G; Terada N; Ashizawa T
    Curr Stem Cell Rep; 2018; 4(4):299-309. PubMed ID: 30524939
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Combining Single Strand Oligodeoxynucleotides and CRISPR/Cas9 to Correct Gene Mutations in β-Thalassemia-induced Pluripotent Stem Cells.
    Niu X; He W; Song B; Ou Z; Fan D; Chen Y; Fan Y; Sun X
    J Biol Chem; 2016 Aug; 291(32):16576-85. PubMed ID: 27288406
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Generation and characterization of a human iPSC cell line expressing inducible Cas9 in the "safe harbor" AAVS1 locus.
    Castaño J; Bueno C; Jiménez-Delgado S; Roca-Ho H; Fraga MF; Fernandez AF; Nakanishi M; Torres-Ruiz R; Rodríguez-Perales S; Menéndez P
    Stem Cell Res; 2017 May; 21():137-140. PubMed ID: 28677529
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Sequence-specific modification of genomic DNA by small DNA fragments.
    Gruenert DC; Bruscia E; Novelli G; Colosimo A; Dallapiccola B; Sangiuolo F; Goncz KK
    J Clin Invest; 2003 Sep; 112(5):637-41. PubMed ID: 12952908
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.