BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 27256682)

  • 1. Investigation of absorption and scattering characteristics of kiwifruit tissue using a single integrating sphere system.
    Fang ZH; Fu XP; He XM
    J Zhejiang Univ Sci B; 2016 Jun; 17(6):484-92. PubMed ID: 27256682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of CPPU on bulk optical properties of kiwifruit during storage in near-infrared range.
    Liu D; Xie D; Guo W
    J Sci Food Agric; 2020 May; 100(7):3111-3119. PubMed ID: 32086814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accuracy of retrieving optical properties from liquid tissue phantoms using a single integrating sphere.
    Vincely VD; Vishwanath K
    Appl Opt; 2022 Jan; 61(2):375-385. PubMed ID: 35200872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polydimethylsiloxane tissue-mimicking phantoms with tunable optical properties.
    Goldfain AM; Lemaillet P; Allen DW; Briggman KA; Hwang J
    J Biomed Opt; 2021 Nov; 27(7):. PubMed ID: 34796707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Spectral characteristics of normal breast samples in the 350-850 nm wavelength range].
    Wang YH; Yang HQ; Xie SS; Ye Z; Su YM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Oct; 29(10):2751-5. PubMed ID: 20038053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoacoustic detection and optical spectroscopy of high-intensity focused ultrasound-induced thermal lesions in biologic tissue.
    Alhamami M; Kolios MC; Tavakkoli J
    Med Phys; 2014 May; 41(5):053502. PubMed ID: 24784408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of absorption and reduced scattering coefficients in Asian human epidermis, dermis, and subcutaneous fat tissues in the 400- to 1100-nm wavelength range for optical penetration depth and energy deposition analysis.
    Shimojo Y; Nishimura T; Hazama H; Ozawa T; Awazu K
    J Biomed Opt; 2020 Apr; 25(4):1-14. PubMed ID: 32356424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of forchlorfenuron and thidiazuron on kiwifruits' internal qualities, optical properties and their relationship during growth.
    Wang J; Cai X; Zeng S; Zhang Z; Chi Q; Guo W
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Mar; 308():123749. PubMed ID: 38113558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of shear rate on the optical properties of human blood in the spectral range 250 to 1100 nm.
    Friebel M; Helfmann J; Müller G; Meinke M
    J Biomed Opt; 2007; 12(5):054005. PubMed ID: 17994893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Precise determination of the optical properties of turbid media using an optimized integrating sphere and advanced Monte Carlo simulations. Part 2: experiments.
    Bergmann F; Foschum F; Zuber R; Kienle A
    Appl Opt; 2020 Apr; 59(10):3216-3226. PubMed ID: 32400606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measuring absorption coefficient of scattering liquids using a tube inside an integrating sphere.
    Villanueva Y; Veenstra C; Steenbergen W
    Appl Opt; 2016 Apr; 55(11):3030-8. PubMed ID: 27139871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of the scattering phase function approximation on the optical properties of blood determined from the integrating sphere measurements.
    Yaroslavsky AN; Yaroslavsky IV; Goldbach T; Schwarzmaier HJ
    J Biomed Opt; 1999 Jan; 4(1):47-53. PubMed ID: 23015169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical properties of apple skin and flesh in the wavelength range from 350 to 2200 nm.
    Saeys W; Velazco-Roa MA; Thennadil SN; Ramon H; Nicolaï BM
    Appl Opt; 2008 Mar; 47(7):908-19. PubMed ID: 18311262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of optical properties of dissected and homogenized biological tissue.
    Eisel M; Ströbl S; Pongratz T; Stepp H; Rühm A; Sroka R
    J Biomed Opt; 2018 Sep; 23(9):1-9. PubMed ID: 30251487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling.
    Gebhart SC; Lin WC; Mahadevan-Jansen A
    Phys Med Biol; 2006 Apr; 51(8):2011-27. PubMed ID: 16585842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Tissue Composition and Microstructure on Rabbit Meat Optical Properties.
    Hao Y; Li C; Li F; Liu C; Wang H; Xie X
    Appl Spectrosc; 2023 Jun; 77(6):623-635. PubMed ID: 36898965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alternative Measurement Configurations for Extracting Bulk Optical Properties Using an Integrating Sphere Setup.
    Thennadil SN; Chen YC
    Appl Spectrosc; 2017 Feb; 71(2):224-237. PubMed ID: 27572632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Empirical relationship between Kubelka-Munk and radiative transfer coefficients for extracting optical parameters of tissues in diffusive and nondiffusive regimes.
    Roy A; Ramasubramaniam R; Gaonkar HA
    J Biomed Opt; 2012 Nov; 17(11):115006. PubMed ID: 23214177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical properties of normal and carcinomatous bronchial tissue.
    Qu J; Macaulay C; Lam S; Palcic B
    Appl Opt; 1994 Nov; 33(31):7397-405. PubMed ID: 20941301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of optical properties of human tissues obtained from parotidectomy in the spectral range of 250 to 800 nm.
    Wisotzky EL; Uecker FC; Dommerich S; Hilsmann A; Eisert P; Arens P
    J Biomed Opt; 2019 Dec; 24(12):1-7. PubMed ID: 31797647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.