These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
510 related articles for article (PubMed ID: 27256721)
1. Effect of ionic strength on the interfacial viscoelasticity and stability of silk fibroin at the oil/water interface. Tang X; Qiao X; Miller R; Sun K J Sci Food Agric; 2016 Dec; 96(15):4918-4928. PubMed ID: 27256721 [TBL] [Abstract][Full Text] [Related]
2. Effect of surfactants on the interfacial viscoelasticity and stability of silk fibroin at different oil-water interfaces. Qiao X; Miller R; Schneck E; Sun K J Sci Food Agric; 2024 Mar; 104(5):2928-2936. PubMed ID: 38029349 [TBL] [Abstract][Full Text] [Related]
3. Interfacial rheology of natural silk fibroin at air/water and oil/water interfaces. Wang L; Xie H; Qiao X; Goffin A; Hodgkinson T; Yuan X; Sun K; Fuller GG Langmuir; 2012 Jan; 28(1):459-67. PubMed ID: 22107484 [TBL] [Abstract][Full Text] [Related]
4. Impact of oil type and WPI/Tween 80 ratio at the oil-water interface: Adsorption, interfacial rheology and emulsion features. Gomes A; Costa ALR; Cunha RL Colloids Surf B Biointerfaces; 2018 Apr; 164():272-280. PubMed ID: 29413606 [TBL] [Abstract][Full Text] [Related]
5. Combinatorial effects of charge characteristics and hydrophobicity of silk fibroin on the sorption and release of charged dyes. Wongpanit P; Rujiravanit R J Biomater Sci Polym Ed; 2012; 23(9):1199-215. PubMed ID: 21639994 [TBL] [Abstract][Full Text] [Related]
6. Influence of pH on the surface and foaming properties of aqueous silk fibroin solutions. Qiao X; Miller R; Schneck E; Sun K Soft Matter; 2020 Apr; 16(15):3695-3704. PubMed ID: 32227052 [TBL] [Abstract][Full Text] [Related]
7. Interactions between fibroin and sericin proteins from Antheraea pernyi and Bombyx mori silk fibers. Du S; Zhang J; Zhou WT; Li QX; Greene GW; Zhu HJ; Li JL; Wang XG J Colloid Interface Sci; 2016 Sep; 478():316-23. PubMed ID: 27314644 [TBL] [Abstract][Full Text] [Related]
8. Synergistic performance of lecithin and glycerol monostearate in oil/water emulsions. Moran-Valero MI; Ruiz-Henestrosa VMP; Pilosof AMR Colloids Surf B Biointerfaces; 2017 Mar; 151():68-75. PubMed ID: 27987457 [TBL] [Abstract][Full Text] [Related]
9. Emulsion stability and dilatational viscoelasticity of ovalbumin/chitosan complexes at the oil-in-water interface. Xiong W; Ren C; Tian M; Yang X; Li J; Li B Food Chem; 2018 Jun; 252():181-188. PubMed ID: 29478530 [TBL] [Abstract][Full Text] [Related]
10. Influence of interfacial rheological properties of mixed emulsifier films on the stability of water-in-oil-in-water emulsions. Opawale FO; Burgess DJ J Pharm Pharmacol; 1998 Sep; 50(9):965-73. PubMed ID: 9811156 [TBL] [Abstract][Full Text] [Related]
12. Stabilization of model beverage cloud emulsions using protein-polysaccharide electrostatic complexes formed at the oil-water interface. Harnsilawat T; Pongsawatmanit R; McClements DJ J Agric Food Chem; 2006 Jul; 54(15):5540-7. PubMed ID: 16848543 [TBL] [Abstract][Full Text] [Related]
13. Soy/whey protein isolates: interfacial properties and effects on the stability of oil-in-water emulsions. Zhang X; Zhang S; Xie F; Han L; Li L; Jiang L; Qi B; Li Y J Sci Food Agric; 2021 Jan; 101(1):262-271. PubMed ID: 32627183 [TBL] [Abstract][Full Text] [Related]
14. Silk fibroin solution properties related to assembly and structure. Matsumoto A; Lindsay A; Abedian B; Kaplan DL Macromol Biosci; 2008 Nov; 8(11):1006-18. PubMed ID: 18629803 [TBL] [Abstract][Full Text] [Related]
15. Adsorption and dilatational rheology of heat-treated soy protein at the oil-water interface: relationship to structural properties. Wang JM; Xia N; Yang XQ; Yin SW; Qi JR; He XT; Yuan DB; Wang LJ J Agric Food Chem; 2012 Mar; 60(12):3302-10. PubMed ID: 22372478 [TBL] [Abstract][Full Text] [Related]