BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 27256876)

  • 21. Identification of target genes to control acetate yield during aerobic fermentation with Saccharomyces cerevisiae.
    Curiel JA; Salvadó Z; Tronchoni J; Morales P; Rodrigues AJ; Quirós M; Gonzalez R
    Microb Cell Fact; 2016 Sep; 15(1):156. PubMed ID: 27627879
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sustainable production of FAEE biodiesel using the oleaginous yeast Yarrowia lipolytica.
    Yu A; Zhao Y; Li J; Li S; Pang Y; Zhao Y; Zhang C; Xiao D
    Microbiologyopen; 2020 Jul; 9(7):e1051. PubMed ID: 32342649
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Autophagy-related gene ATG13 is involved in control of xylose alcoholic fermentation in the thermotolerant methylotrophic yeast Ogataea polymorpha.
    Dmytruk KV; Ruchala J; Grabek-Lejko D; Puchalski C; Bulbotka NV; Sibirny AA
    FEMS Yeast Res; 2018 Mar; 18(2):. PubMed ID: 29438555
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Increased ethanol production from glycerol by Saccharomyces cerevisiae strains with enhanced stress tolerance from the overexpression of SAGA complex components.
    Yu KO; Jung J; Ramzi AB; Choe SH; Kim SW; Park C; Han SO
    Enzyme Microb Technol; 2012 Sep; 51(4):237-43. PubMed ID: 22883559
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Overexpression of bacterial xylose isomerase and yeast host xylulokinase improves xylose alcoholic fermentation in the thermotolerant yeast Hansenula polymorpha.
    Dmytruk OV; Voronovsky AY; Abbas CA; Dmytruk KV; Ishchuk OP; Sibirny AA
    FEMS Yeast Res; 2008 Feb; 8(1):165-73. PubMed ID: 17662053
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Toward "homolactic" fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a kinetically efficient l-lactate dehydrogenase within pdc1-pdc5 deletion background.
    Novy V; Brunner B; Müller G; Nidetzky B
    Biotechnol Bioeng; 2017 Jan; 114(1):163-171. PubMed ID: 27426989
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineering of sugar transporters for improvement of xylose utilization during high-temperature alcoholic fermentation in Ogataea polymorpha yeast.
    Vasylyshyn R; Kurylenko O; Ruchala J; Shevchuk N; Kuliesiene N; Khroustalyova G; Rapoport A; Daugelavicius R; Dmytruk K; Sibirny A
    Microb Cell Fact; 2020 Apr; 19(1):96. PubMed ID: 32334587
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinetic modeling and sensitivity analysis for higher ethanol production in self-cloning xylose-using Saccharomyces cerevisiae.
    Fukuda A; Kuriya Y; Konishi J; Mutaguchi K; Uemura T; Miura D; Okamoto M
    J Biosci Bioeng; 2019 May; 127(5):563-569. PubMed ID: 30482500
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A distinct type of alcohol dehydrogenase, adh4+, complements ethanol fermentation in an adh1-deficient strain of Schizosaccharomyces pombe.
    Sakurai M; Tohda H; Kumagai H; Giga-Hama Y
    FEMS Yeast Res; 2004 Mar; 4(6):649-54. PubMed ID: 15040954
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Engineering of Ogataea polymorpha strains with ability for high-temperature alcoholic fermentation of cellobiose.
    Vasylyshyn R; Dmytruk O; Sybirnyy A; Ruchała J
    FEMS Yeast Res; 2024 Jan; 24():. PubMed ID: 38400543
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Overexpression of ADH1 and HXT1 genes in the yeast Saccharomyces cerevisiae improves the fermentative efficiency during tequila elaboration.
    Gutiérrez-Lomelí M; Torres-Guzmán JC; González-Hernández GA; Cira-Chávez LA; Pelayo-Ortiz C; Ramírez-Córdova Jde J
    Antonie Van Leeuwenhoek; 2008 May; 93(4):363-71. PubMed ID: 18240006
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Construction of Hansenula polymorpha strains with improved thermotolerance.
    Ishchuk OP; Voronovsky AY; Abbas CA; Sibirny AA
    Biotechnol Bioeng; 2009 Dec; 104(5):911-9. PubMed ID: 19575437
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reprogramming of the Ethanol Stress Response in Saccharomyces cerevisiae by the Transcription Factor Znf1 and Its Effect on the Biosynthesis of Glycerol and Ethanol.
    Samakkarn W; Ratanakhanokchai K; Soontorngun N
    Appl Environ Microbiol; 2021 Jul; 87(16):e0058821. PubMed ID: 34105981
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolic engineering for high glycerol production by the anaerobic cultures of Saccharomyces cerevisiae.
    Semkiv MV; Dmytruk KV; Abbas CA; Sibirny AA
    Appl Microbiol Biotechnol; 2017 Jun; 101(11):4403-4416. PubMed ID: 28280870
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plate ethanol-screening assay for selection of the Pichia stipitis and Hansenula polymorpha yeast mutants with altered capability for xylose alcoholic fermentation.
    Grabek-Lejko D; Ryabova OB; Oklejewicz B; Voronovsky AY; Sibirny AA
    J Ind Microbiol Biotechnol; 2006 Nov; 33(11):934-40. PubMed ID: 16775686
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae.
    Kondo T; Tezuka H; Ishii J; Matsuda F; Ogino C; Kondo A
    J Biotechnol; 2012 May; 159(1-2):32-7. PubMed ID: 22342368
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced ethanol formation by Clostridium thermocellum via pyruvate decarboxylase.
    Tian L; Perot SJ; Hon S; Zhou J; Liang X; Bouvier JT; Guss AM; Olson DG; Lynd LR
    Microb Cell Fact; 2017 Oct; 16(1):171. PubMed ID: 28978312
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Engineering redox cofactor utilization for detoxification of glycolaldehyde, a key inhibitor of bioethanol production, in yeast Saccharomyces cerevisiae.
    Jayakody LN; Horie K; Hayashi N; Kitagaki H
    Appl Microbiol Biotechnol; 2013 Jul; 97(14):6589-600. PubMed ID: 23744286
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of new dominant selectable markers for the nonconventional yeasts Ogataea polymorpha and Candida famata.
    Bratiichuk D; Kurylenko O; Vasylyshyn R; Zuo M; Kang Y; Dmytruk K; Sibirny A
    Yeast; 2020 Sep; 37(9-10):505-513. PubMed ID: 32307750
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of major ADH genes in ethanol metabolism of Pichia pastoris.
    Karaoğlan M; Erden-Karaoğlan F; Yılmaz S; İnan M
    Yeast; 2020 Feb; 37(2):227-236. PubMed ID: 31603243
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.